- acend gmbh

Setup

Setup instructions

This training depends on oc , the OpenShift command-line interface.

You have the choice of either using OpenShift's web terminal or installing oc locally.

If you prefer to not install anything on your computer, follow the instructions on the 1. Web terminal page.
The 2. Local usage chapter explains how to install oc for the respective operating system.

Also have a look at the 3. Other ways to work with OpenShift, which is, however, totally optional.

In case you’ve already installed oc, please make sure you have an up-to-date version.

1/53

- acend gmbh

1. Web terminal

Using OpenShift’'s web terminal might be more convenient for you as it doesn’t require you to install oc
locally on your computer.

Note

If you do change your mind, head right over to 2. Local usage.

Task 1.1: Login on the web console

First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 1.2: Initialize terminal

Make sure to create a dedicated project for the web terminal!

In OpenShift’s web console:

Click on the terminal icon on the upper right

Choose to create a new project

Name your project <username>-terminal where <username> is the username given to you during this training
Click Start

PwnNH

2/53

- acend gmbh

Red Hat
OpenShift

Getting Started

+

Initialize terminal

Project

Project name

Task 1.3: Verification

After the initial setup, you're presented with a web terminal. Tools like oc are already installed and you're
also already logged in.

You can check this by executing the following command:

oc whoami

You're now ready to go!

The terminal project is only meant to be used for the web terminal resources. Always check that you do not
use the terminal namespace for the other labs!

3/53

- acend gmbh

Next steps

If you're interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you're ready to go, head on over to the labs and begin with the training!

4/53

file:///docs/

- acend gmbh
2. Local usage

Please follow the instructions on the 2.1. cl/i installation page to install oc .

If you already have successfully installed oc, please verify that your installed version is current. Then, head
over to 2.2. Console login to log in.

2.1. cli installation

The oc command is the command-line interface to work with one or several OpenShift clusters.
The client is written in Go and you can run the single binary on the following operating systems:

e 2.1.1. Windows
e 2.1.2. macOS
e 2.1.3. Linux

5/53

- acend gmbh

2.2. Console login

Task 2.2.1: Login on the web console

First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 2.2.2: Login on the command line

In order to log in on the command line, copy the login command from the web console.

To do that, open the Web Console and click on your username that you see at the top right, then choose
Copy Login Command.

© © developer «

Copy Login Command

Log out

A new tab or window will open in your browser.

Note
ou might need to log in again.

The page now displays a link Display token. Click on it and copy the command under Log in with this
token.

Now paste the copied command on the command line.

Task 2.2.3: Verify login

If you now execute oc version you should see something like this (your output may vary):

Client Version: 4.11.2
Kustomize Version: v4.5.4
Kubernetes Version: v1.24.0+dc5a2fd

First steps with oc

The oc binary has many subcommands. Invoke oc --help (or simply -h) to get a list of all subcommands; oc
<subcommand> --help gives you detailed help about a subcommand.

6/53

- acend gmbh

Next steps

If you're interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you're ready to go, head on over to the labs and begin with the training!

7/53

file:///docs/

- acend gmbh

3. Other ways to work with OpenShift

Other ways to work with OpenShift

If you don’t have access to a running OpenShift development environment (anymore), there are several
options to get one.

e OpenShift Developer Sandbox : 30 days of no-cost access to a shared cluster on OpenShift
e OpenShift Local : A local OpenShift environmennt running on your machine

* OKD single node installation : OKD (OpenShift community edition) single node installation

Next steps

When you're ready to go, head on over to the labs and begin with the training!

8/53

https://developers.redhat.com/developer-sandbox
https://developers.redhat.com/products/openshift-local/overview
https://docs.okd.io/latest/installing/installing_sno/install-sno-preparing-to-install-sno.html
file:///docs/

- acend gmbh

Labs

The purpose of these labs is to convey OpenShift basics by providing hands-on tasks for people. OpenShift
will allow you to deploy and deliver your software packaged as containers in an easy, straightforward way.

Goals of these labs:

¢ Help you get started with this modern technology
* Explain the basic concepts to you
e Show you how to deploy your first applications on Kubernetes

Additional Docs
« OpenShift Docs

Additional Tutorials

9/53

https://docs.openshift.com/
https://learn.openshift.com/

- acend gmbh

1. Introduction

In this lab, we will introduce the core concepts of OpenShift.

All explanations and resources used in this lab give only a quick and not detailed overview. As OpenShift is
based on Kubernetes, its concepts also apply to OpenShift which you can find in the official Kubernetes
documentation .

Core concepts

With the open source software OpenShift, you get a platform to build and deploy your application in a
container as well as operate it at the same time. Therefore, OpenShift is also called a Container Platform, or
the term Container-as-a-Service (CaaS) is used.

Depending on the configuration the term Platform-as-a-Service (PaaS) works as well.

Container engine

OpenShift's underlying container engine is CRI-O . Earlier releases used Daocker .

Docker was originally created to help developers test their applications in their continuous integration
environments. Nowadays, system admins also use it. CRI-O doesn’t exist as long as Docker does. It is a
“lightweight container runtime for Kubernetes” and is fully OCl-compliant .

Overview
OpenShift basically consists of control plane and worker nodes.

Worker node 1

Kubernetes Architectur

High Le‘lel- Over\liew Comainm ! ' Container 1

Container 2 Container 1

Container 3 Container 2

Kubernetes master
- Container Runtime
(ﬁl User interface kubelet kube-proxy

—_—
CLl, kubectl Scheduler Worker node 2

Controller-Manager

Container 1 Container 1

Container 2 Container 1
etcd

Container 3 Container 2

Container Runtime

kubelet kube-proxy

acend

10/53

https://kubernetes.io/docs/concepts/
https://cri-o.io/
https://www.docker.com/
https://github.com/opencontainers/runtime-spec

- acend gmbh

Control plane and worker nodes

The control plane components are the AP/ server, the scheduler and the controller manager. The API server
itself represents the management interface. The scheduler and the controller manager decide how
applications should be deployed on the cluster. Additionally, the state and configuration of the cluster itself
are controlled in the control plane components.

Worker nodes are also known as compute nodes, application nodes or minions, and are responsible for
running the container workload (applications). The control plane for the worker nodes is implemented in the
control plane components. The hosts running these components were historically called masters.

Containers and images

The smallest entities in Kubernetes and OpenShift are Pods, which resemble your containerized application.

Using container virtualization, processes on a Linux system can be isolated up to a level where only the
predefined resources are available. Several containers can run on the same system without “seeing” each
other (files, process IDs, network). One container should contain one application (web server, database,
cache, etc.). It should be at least one part of the application, e.g. when running a multi-service middleware.
In a container itself any process can be started that runs natively on your operating system.

Containers are based on images. An image represents the file tree, which includes the binary, shared
libraries and other files which are needed to run your application.

A container image is typically built from a containerfile Or bpockerfile , which is a text file filled with
instructions. The end result is a hierarchically layered binary construct. Depending on the backend, the
implementation uses overlay or copy-on-write (COW) mechanisms to represent the image.

Layer example for a Tomcat application:

1. Base image (Alpine)
2. Install Java

3. Install Tomcat

4. Install App

The pre-built images under version control can be saved in an image registry and can then be used by the
container platform.

Namespaces and Projects

Namespaces in Kubernetes represent a logical segregation of unique names for entities (Pods, Services,
Deployments, ConfigMaps, etc.).

In OpenShift, users do not directly create Namespaces, they create Projects. A Project is a Namespace with
additional annotations.

Note

OpenShift's concept of a Project does not coincide with Rancher’s.

Permissions and roles can be bound on a per-project basis. This way, a user can control his own resources
inside a Project.

Note

Some resources are valid cluster-wise and cannot be set and controlled on a namespace basis.

11/53

- acend gmbh
Pods
A Pod is the smallest entity in Kubernetes and OpenShift.

It represents one instance of your running application process. The Pod consists of at least one container
which contains your application. The application ports from inside the Pod are exposed via Services.

Services

A service represents a static endpoint for your application in the Pod. As a Pod and its IP address typically
are considered dynamic, the IP address of the Service does not change when changing the application
inside the Pod. If you scale up your Pods, you have an automatic internal load balancing towards all Pod IP
addresses.

There are different kinds of Services:

e clusterIP : Default virtual IP address range

® NodePort : Same as clusterIP plus open ports on the nodes

¢ loadBalancer : An external load balancer is created, only works in cloud environments, e.g. AWS ELB
¢ ExternalName : A DNS entry is created, also only works in cloud environments

A Service is unique inside a Namespace.

Deployment
Have a look at the official documentation .

Volume
Have a look at the official documentation .

Job

Have a look at the official documentation .

History

There is a official Kubernetes Documentary available on Youtube.

e Kubernetes: The Documentary [PART 1]
e Kubernetes: The Documentary [PART 2]

Inspired by the open source success of Docker in 2013 and seeing the need for innovation in the area of
large-scale cloud computing, a handful of forward-thinking Google engineers set to work on the container
orchestrator that would come to be known as Kubernetes- this new tool would forever change the way the
internet is built.

These engineers overcome technical challenges, resistance to open source from within, naysayers, and
intense competition from other big players in the industry.

Most engineers know about “The Container Orchestrator Wars’’' but most people would not be able to
explain exactly what happened, and why it was Kubernetes that ultimately came out on top.

There is no topic more relevant to the current open source landscape. This film captures the story directly
from the people who lived it, featuring interviews with prominent engineers from Google, Red Hat, Twitter
12 /53

https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html
https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-volumes.html
https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html
https://www.youtube.com/watch?v=BE77h7dmoQU
https://www.youtube.com/watch?v=318elIq37PE

- acend gmbh
and others.

1.1. YAML

YAML Ain’'t Markup Language (YAML) is a human-readable data-serialization language. YAML is not a
programming language. It is mostly used for storing configuration information.

Note

Data serialization is the process of converting data objects, or object states present in complex data
structures, into a stream of bytes for storage, transfer, and distribution in a form that can allow recovery of
its original structure.

As you will see a lot of YAML in our Kubernetes basics course, we want to make sure you can read and write
YAML. If you are not yet familiar with YAML, this introduction is waiting for you. Otherwise, feel free to skip it
or come back later if you meet some less familiar YAML stuff.

This introduction is based on the YAML Tutorial from cloudbees.com .
For more information and the full spec have a look at https://yaml.org/

A simple file

Let’s look at a YAML file for an overview:

foo: "foo is not bar"
bar: "bar is not foo"
pi: 3.14159
awesome: true
kubernetes-birth-year: 2015
cloud-native:
- scalable
- dynamic
- cloud
- container
kubernetes:
version: "1.22.0"
deployed: true
applications:
- name: "My App"
location: "public cloud"

The file starts with three dashes. These dashes indicate the start of a new YAML document. YAML supports
multiple documents, and compliant parsers will recognize each set of dashes as the beginning of a new one.

Then we see the construct that makes up most of a typical YAML document: a key-value pair. foo is a key
that points to a string value: foo is not bar

YAML knows four different data types:

e foo & bar are strings.

¢ pi is a floating-point number

¢ awesome iS @ boolean

e kubernetes-birth-year iS an integer

13/53

https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://yaml.org/

- acend gmbh
You can enclose strings in single or double-quotes or no quotes at all. YAML recognizes unquoted numerals
as integers or floating point.

The cloud-native item is an array with four elements, each denoted by an opening dash. The elements in
cloud-native are indented with two spaces. Indentation is how YAML denotes nesting. The number of spaces
can vary from file to file, but tabs are not allowed.

Finally, kubernetes is a dictionary that contains a string version , @ boolean deployed and an array applications
where the item of the array contains two strings .

YAML supports nesting of key-values, and mixing types.

Indentation and Whitespace

Whitespace is part of YAML's formatting. Unless otherwise indicated, newlines indicate the end of a field.
You structure a YAML document with indentation. The indentation level can be one or more spaces. The
specification forbids tabs because tools treat them differently.

Comments

Comments begin with a pound sign. They can appear after a document value or take up an entire line.

This is a full 1ine comment
foo: bar # this is a comment, too

YAML data types

Values in YAML's key-value pairs are scalar. They act like the scalar types in languages like Perl, Javascript,
and Python. It's usually good enough to enclose strings in quotes, leave numbers unquoted, and let the
parser figure it out. But that’s only the tip of the iceberg. YAML is capable of a great deal more.

Key-Value Pairs and Dictionaries

The key-value is YAML's basic building block. Every item in a YAML document is a member of at least one
dictionary. The key is always a string. The value is a scalar so that it can be any datatype. So, as we’ve
already seen, the value can be a string, a number, or another dictionary.

Numeric types

YAML recognizes numeric types. We saw floating point and integers above. YAML supports several other
numeric types. An integer can be decimal, hexadecimal, or octal.

foo: 12345
bar: 0x12d4
plop: 023332

YAML supports both fixed and exponential floating point numbers.

foo: 1230.15
bar: 12.3015e+05

14/53

- acend gmbh
Finally, we can represent not-a-number (NAN) or infinity.

foo: .inf
bar: -.Inf
plop: .NAN

Foo is infinity. Bar is negative infinity, and plop is NAN.

Strings

YAML strings are Unicode. In most situations, you don’t have to specify them in quotes.

foo: this is a normal string

But if we want escape sequences handled, we need to use double quotes.

foo: "this is not a normal string\n"
bar: this is not a normal string\n

YAML processes the first value as ending with a carriage return and linefeed. Since the second value is not
quoted, YAML treats the \n as two characters.

foo: this is not a normal string
bar: this is not a normal string\n

YAML will not escape strings with single quotes, but the single quotes do avoid having string contents
interpreted as document formatting. String values can span more than one line. With the fold (greater than)
character, you can specify a string in a block.

bar: >
this is not a normal string it
spans more than
one line
see?

But it’s interpreted without the newlines: bar : this is not a normal string it spans more than one line see?

The block (pipe) character has a similar function, but YAML interprets the field exactly as is.

15/53

- acend gmbh

bar: |
this is not a normal string it
spans more than
one line
see?

So, we see the newlines where they are in the document.

bar : this is not a normal string it
spans more than

one line

see?

Nulls

You enter nulls with a tilde or the unquoted null string literal.

foo: ~
bar: null
Booleans

YAML indicates boolean values with the keywords True, On and Yes for true. False is indicated with False,
Off, or No.

foo: True
bar: False
light: On
TV: Off

Arrays

You can specify arrays or lists on a single line.

items: [1, 2, 3, 4, 5]
names: ["one", "two", "three", "four"]

Or, you can put them on multiple lines.

16 /53

- acend gmbh

items:
=

[
HwWN

= 5
names:

- "one"

- Ttwo"

- "three"

- "four"

The multiple line format is useful for lists that contain complex objects instead of scalars.

items:
- things:
thingl: huey
things2: dewey
thing3: louie
- other things:
key: value

An array can contain any valid YAML value. The values in a list do not have to be the same type.

Dictionaries

We covered dictionaries above, but there’'s more to them. Like arrays, you can put dictionaries inline. We
saw this format above.

foo: { thingl: huey, thing2: louie, thing3: dewey }

We’ve seen them span lines before.

foo: bar
bar: foo

And, of course, they can be nested and hold any value.

foo:
bar:
- bar
- rab
- plop

17/53

- acend gmbh

2. First steps

In this lab, we will interact with the OpenShift cluster for the first time.

Please make sure you completed Setup before you continue with this lab.

Projects

As a first step on the cluster, we are going to create a new Project.

A Project is a logical design used in OpenShift to organize and separate your applications, Deployments,
Pods, Ingresses, Services, etc. on a top-level basis. Authorized users inside a Project are able to manage
those resources. Project names have to be unique in your cluster.

Task 2.2: Create a Project

Create a new Project in the lab environment. The oc help output can help you figure out the right command.

Note

Please choose an identifying name for your Project, e.g. your initials or name as a prefix. We are going to
use <namespace> as a placeholder for your created Project.

Solution

To create a new Project on your cluster use the following command:

oc new-project <namespace>

Note

lin order to declare what Project to use, you have several possibilities:

¢ Some prefer to explicitly select the Project for each oc command by adding --namespace <namespace> OF -n
<namespace>

e By using the following command, you can switch into another Project instead of specifying it for each
oc command

oc project <namespace>

Task 2.3: Discover the OpenShift web console

Discover the different menu entries in the two views, the Developer and the Administrator view.

Display all existing Pods in the previously created Project with oc (there shouldn’t yet be any):

18/53

- acend gmbh

oc get pod --namespace <namespace>

Note

With the command oc get you can display all kinds of resources.

19/53

- acend gmbh
3. Deploying a container image

In this lab, we are going to deploy our first container image and look at the concepts of Pods, Services, and
Deployments.

Task 3.1: Start and stop a single Pod

After we’'ve familiarized ourselves with the platform, we are going to have a look at deploying a pre-built
container image from Quay.io or any other public container registry.

In OpenShift we have used the <project> identifier to select the correct project. Please use the same
identifier in the context <namespace> to do the same for all upcoming labs. Ask your trainer if you want more
information on that.

First, we are going to directly start a new Pod. For this we have to define our Kubernetes Pod resource
definition. Create a new file pod_awesome-app.yaml with the content below.

Note

Alternatively, you can create the Pod definition on the web console. Simply click on the plus sign button
on the upper right (1), make sure you’ve selected the correct Project (2) and paste the content.

Red Hat

OpenShift

‘ Project: All Projects = | 2

Import YAML

Drag and drop YAML or JSON files into the editor, or manually enter files and use | - - - | to separate each definition.

apiVersion: vi
kind: Pod
metadata:

name: awesome-app

spec:

containers:

- image: quay.io/acend/example-web-go:latest
imagePullPolicy: Always
name: awesome-app
resources:

limits:
cpu: 20m
memory: 32Mi
requests:
cpu: 10m
memory: 16Mi

Note

If you used the web console to import the Pod’s YAML definition, don’t execute the following command.

Now we can apply this with:

20/53

- acend gmbh
oc apply -f pod_awesome-app.yaml --namespace <namespace>
The output should be:
pod/awesome-app created

Use oc get pods --namespace <namespace> in order to show the running Pod:
oc get pods --namespace <namespace>

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
awesome-app 1/1 Running @ Tm24s

Have a look at your awesome-app Pod inside the OpenShift web console.

Now delete the newly created Pod:

oc delete pod awesome-app --namespace <namespace>

Task 3.2: Create a Deployment

In some use cases it can make sense to start a single Pod. But this has its downsides and is not really a
common practice. Let’s look at another concept which is tightly coupled with the Pod: the so-called
Deployment. A Deployment ensures that a Pod is monitored and checks that the number of running Pods
corresponds to the number of requested Pods.

To create a new Deployment we first define our Deployment in a new file deployment_example-web-go.yaml with
the content below.

Note

ou could, of course, again import the YAML on the web console as described above.

21/53

- acend gmbh

apiVersion: apps/vi
kind: Deployment
metadata:
labels:
app: example-web-go
name: example-web-go
spec:
replicas: 1
selector:
matchLabels:
app: example-web-go
template:
metadata:
labels:
app: example-web-go
spec:
containers:

- image: quay.io/acend/example-web-go:latest
name: example-web-go
resources:

requests:
cpu: 10m
memory: 16Mi
limits:
cpu: 20m
memory: 32Mi

And with this we create our Deployment inside our already created namespace:

Note

If you used the web console to import the Deployment’s YAML definition, don’t execute the following
command.

oc apply -f deployment_example-web-go.yaml --namespace <namespace>

The output should be:
deployment . apps/example-web-go created

We’'re using a simple sample application written in Go, which you can find built as an image on Quay.io or as
source code on GitHub .

OpenShift creates the defined and necessary resources, pulls the container image (in this case from
Quay.io) and deploys the Pod.

Use the command oc get with the -w parameter in order to get the requested resources and afterward
watch for changes.

Note

he oc get -w command will never end unless you terminate it with cTrRL-c.

oc get pods -w --namespace <namespace>

22/53

https://quay.io/repository/acend/example-web-go
https://github.com/acend/awesome-apps

- acend gmbh
Note

Instead of using the -w parameter you can also use the watch command which should be available on most
Linux distributions:

watch oc get pods --namespace <namespace>

This process can last for some time depending on your internet connection and if the image is already
available locally.

Note

If you want to create your own container images and use them with OpenShift, you definitely should have a
look at these best practices and apply them. This image creation guide may be for OpenShift, however it
also applies to Kubernetes and other container platforms.

Creating Kubernetes resources

There are two fundamentally different ways to create Kubernetes resources. You've already seen one way:
Writing the resource’s definition in YAML (or JSON) and then applying it on the cluster using oc apply .

The other variant is to use helper commands. These are more straightforward: You don’t have to copy a
YAML definition from somewhere else and then adapt it. However, the result is the same. The helper
commands just simplify the process of creating the YAML definitions.

As an example, let’s look at creating above deployment, this time using a helper command instead. If you
already created the Deployment using above YAML definition, you don’t have to execute this command:

oc create deployment example-web-go --image=quay.io/acend/example-web-go:latest --namespace <namespace>

It's important to know that these helper commands exist. However, in a world where GitOps concepts have
an ever-increasing presence, the idea is not to constantly create these resources with helper commands.
Instead, we save the resources’ YAML definitions in a Git repository and leave the creation and management
of those resources to a tool.

Task 3.3: Viewing the created resources

Display the created Deployment using the following command:

oc get deployments --namespace <namespace>

A Deployment defines the following facts:

« Update strategy: How application updates should be executed and how the Pods are exchanged

e Containers
o Which image should be deployed

o Environment configuration for Pods
o ImagePullPolicy

23/53

https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

- acend gmbh
¢ The number of Pods/Replicas that should be deployed

By using the -o (or --output) parameter we get a lot more information about the deployment itself. You can
choose between YAML and JSON formatting by indicating -o yam1 or -o json . In this training we are going to
use YAML, but please feel free to replace yami with json if you prefer.

oc get deployment example-web-go -o yaml --namespace <namespace>
After the image has been pulled, OpenShift deploys a Pod according to the Deployment:
oc get pods --namespace <namespace>

which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-go-69b658f647-xnm94 1/1 Running @ 39s

The Deployment defines that one replica should be deployed — which is running as we can see in the
output. This Pod is not yet reachable from outside the cluster.

Task 3.4: Verify the Deployment in the OpenShift web
console

Try to display the logs from the example application in the OpenShift web console.

Task 3.5: Build the image yourself

Up until now, we’ve used pre-built images from Quay.io. OpenShift offers the ability to build images on the
cluster itself using different strategies :

« Docker build strategy
¢ Source-to-image build strategy
e Custom build strategy
¢ Pipeline build strategy

We are going to use the Docker build strategy. It expects:

[...] a repository with a Dockerfile and all required artifacts in it to produce a runnable image.

All of these requirements are already fulfilled in the source code repaository on GitHub , so let’s build the

image!

Note
Have a look at OpenShift’s documentation to learn more about the other available build strategies.

First we clean up the already existing Deployment:

24 /53

https://docs.openshift.com/container-platform/latest/cicd/builds/understanding-image-builds.html
https://github.com/acend/awesome-apps/tree/main/go
https://docs.openshift.com/container-platform/latest/cicd/builds/understanding-image-builds.html

- acend gmbh

oc delete deployment example-web-go --namespace <namespace>

We are now ready to create the build and deployment, all in one command:

0oC new-app --name example-web-go --labels app=example-web-go --context-dir go/ --strategy docker https://github.com/ace
nd/awesome-apps.git --namespace <namespace>

Let’'s watch the image’s build process:

oc logs bc/example-web-go --follow --namespace <namespace>

The message Push successful signifies the image’s successful build and push to OpenShift’s internal image.

In the above command you discovered a new resource type bc which is the abbreviation for BuildConfig. A
BuildConfig defines how a container image has to be built.

A Build resource represents the build process itself based upon the BuildConfig’s definition. A build takes
place in a Pod on OpenShift, so instead of referencing the BuildConfig in our oc logs command, we could
have used the build Pod’s log output. However, referencing the BuildConfig has the advantage that it can be
reused each time a build is run. A build Pod changes its name with every build.

Have a look at the new Deployment created by the oc new-app command:

oc get deployment example-web-go -o yaml --namespace <namespace>

It looks the same as before with the only essential exception that it uses the image we just built instead of
the pre-built image from Quay.io:

spec:
containers:
- image: image-registry.openshift-image-registry.svc:5000/<namespace>/awesome-app@sha256:4cd671273a837453464f7264
afe845b299297ebe032f940fd005cfIc40d1e76¢c

25/53

- acend gmbh

4. Exposing a service

In this lab, we are going to make the freshly deployed application from the last lab available online.

Task 4.1: Create a ClusterlIP Service

The command oc apply -f deployment_example-web-go.yaml from the last lab creates a Deployment but no Service.
A OpenShift Service is an abstract way to expose an application running on a set of Pods as a network
service. For some parts of your application (for example, frontends) you may want to expose a Service to an
external IP address which is outside your cluster.

OpenShift serviceTypes allow you to specify what kind of Service you want. The default is clusterIp .
Type Values and their behaviors are:

e ClusterIP : EXposes the Service on a cluster-internal IP. Choosing this value only makes the Service
reachable from within the cluster. This is the default ServiceType.

* NodePort : EXposes the Service on each Node’s IP at a static port (the NodePort). A ClusterlP Service, to
which the NodePort Service routes, is automatically created. You’ll be able to contact the NodePort
Service from outside the cluster, by requesting <NodelP>:<NodePort>.

¢ loadBalancer : Exposes the Service externally using a cloud provider’s load balancer. NodePort and
ClusterlP Services, to which the external load balancer routes, are automatically created.

e ExternalName : Maps the Service to the contents of the externalName field (e.g. foo.bar.example.com), by
returning a CNAME record with its value. No proxying of any kind is set up.

You can also use Ingress to expose your Service. Ingress is not a Service type, but it acts as the entry point
for your cluster. Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the
cluster. Traffic routing is controlled by rules defined on the Route resource. A Route may be configured to
give Services externally reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based
virtual hosting. An Ingress controller is responsible for fulfilling the route, usually with a load balancer,
though it may also configure your edge router or additional frontends to help handle the traffic.

In order to create a Route, we first need to create a Service of type ClusterlP .

To create the Service add a new file svc-web-go.yaml with the following content:

apiVersion: vi
kind: Service
metadata:

labels:
app: example-web-go

name: example-web-go

spec:

ports:

- port: 5000
protocol: TCP
targetPort: 5000

selector:
app: example-web-go

type: ClusterIP

And then apply the file with:

26 /53

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

- acend gmbh

oc apply -f svc-web-go.yaml --namespace <namespace>

There is also am imperative command to create a service and expose your application which can be used
instead of the yaml file with the oc apply ... command

oc expose deployment example-web-go --type=ClusterIP --name=example-web-go --port=5000 --target-port=5000 --namespace <
namespace>

You will get the error message reading Error from server (AlreadyExists): services "example-web-go" already exists
here. This is because the oc new-app command you executed during lab 3 already created a service. This is
the default behavior of oc new-app While oc create deployment doesn’t have this functionality.

As a consequence, the oc expose command above doesn’t add anything new but it demonstrates how to
easily create a service based on a deployment.

Let’s have a more detailed look at our Service:

oc get services --namespace <namespace>

Which gives you an output similar to this:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-web-go ClusterIP 10.43.91.62 <none> 5000/TCP
Note

Service IP (CLUSTER-IP) addresses stay the same for the duration of the Service’s lifespan.

By executing the following command:

oc get service example-web-go -o yaml --namespace <namespace>

You get additional information:

27 /53

- acend gmbh

apiVersion: vi
kind: Service
metadata:

iéﬁels:
app: example-web-go
managedFields:

name: example-web-go
namespace: <namespace>
spec:
clusterIP: 10.43.91.62
externalTrafficPolicy: Cluster
ports:
- port: 5000
protocol: TCP
targetPort: 5000
selector:
app: example-web-go
sessionAffinity: None
type: ClusterIP
status:
loadBalancer: {}

The Service’s selector defines which Pods are being used as Endpoints. This happens based on labels. Look
at the configuration of Service and Pod in order to find out what maps to what:

oc get service example-web-go -o yaml --namespace <namespace>

selector:
app: example-web-go

With the following command you get details from the Pod:

Note

First, get all Pod names from your namespace with (oc get pods --namespace <namespace>) and then replace
<pod> in the following command. If you have installed and configured the bash completion, you can also
press the TAB key for autocompletion of the Pod’s name.

oc get pod <pod> -o yaml --namespace <namespace>

Let's have a look at the label section of the Pod and verify that the Service selector matches the Pod’s
labels:

"iabels:
app: example-web-go

This link between Service and Pod can also be displayed in an easier fashion with the oc describe coOmmand:

28 /53

- acend gmbh

oc describe service example-web-go --namespace <namespace>

Name: example-web-go
Namespace: example-ns
Labels: app=example-web-go
Annotations: <none>
Selector: app=example-web-go
Type: ClusterIP
IP: 10.39.240.212
Port: <unset> 5000/TCP
TargetPort: 5000/TCP
Endpoints: 10.36.0.8:5000
Session Affinity: None
External Traffic Policy: Cluster
Events:

Type Reason Age From Message

The Endpoints show the IP addresses of all currently matched Pods.

Task 4.2: Expose the Service

With the ClusterlP Service ready, we can now create the Route resource.
oc create route edge example-web-go --service example-web-go --namespace <namespace>

The output should be:

route.route.openshift.io/example-web-go created
We are now able to access our app via the freshly created route at https://example-web-go-<namespace>.<appdomain>
Find your actual app URL by looking at your route (HOST/PORT):

oc get route --namespace <namespace>

Browse to the URL and check the output of your app.

Note

If the site doesn’t load, check if you are using the http://, not the https:// protocol, which might be the
default in your browser.

Note

he <appdomain> is the default domain under which your applications will be accessible and is provided by
your trainer. You can also use oc get route example-web-go t0 see the exact value of the exposed route.

29/53

- acend gmbh

Task 4.4: For fast learners

Have a closer look at the resources created in your namespace <namespace> With the following commands and
try to understand them:

oc describe namespace <namespace>

oc get all --namespace <namespace>

oc describe <resource> <name> --namespace <namespace>

oc get <resource> <name> -o yaml --namespace <namespace>

30/53

- acend gmbh
5. Scaling

In this lab, we are going to show you how to scale applications on OpenShift. Furthermore, we show you how
OpenShift makes sure that the number of requested Pods is up and running and how an application can tell
the platform that it is ready to receive requests.

Note

his lab does not depend on previous labs. You can start with an empty Namespace.

Task 5.1: Scale the example application

Create a new Deployment in your Namespace. So again, lets define the Deployment using YAML in a file
deployment_example-web-app.yaml With the following content:

apiVersion: apps/vi
kind: Deployment
metadata:
labels:
app: example-web-app
name: example-web-app
spec:
replicas: 1
selector:
matchLabels:
app: example-web-app
strategy:
rollingUpdate:
maxSurge: 25%
maxUnavailable: @
type: RollingUpdate
template:
metadata:
labels:
app: example-web-app
spec:
containers:

- image: quay.io/acend/example-web-python:latest
name: example-web-app
resources:

limits:
cpu: 100m
memory: 128Mi
requests:
cpu: 50m
memory: 128Mi

and then apply with:
oc apply -f deployment_example-web-app.yaml --namespace <namespace>

If we want to scale our example application, we have to tell the Deployment that we want to have three
running replicas instead of one. Let’'s have a closer look at the existing ReplicaSet:

oc get replicasets --namespace <namespace>

31/53

- acend gmbh

Which will give you an output similar to this:

NAME
example-web-app-86d9d584f8

Or for even more details:

DESIRED

1

1

CURRENT

1

READY AGE

110s

oc get replicaset <replicaset> -o yaml --namespace <namespace>

The ReplicaSet shows how many instances of a Pod are desired, current and ready.

Now we scale our application to three replicas:

oc scale deployment example-web-app --replicas=3 --namespace <namespace>

Check the number of desired, current and ready replicas:

oc get replicasets --namespace <namespace>

NAME
example-web-app-86d9d584f8

Look at how many Pods there are:

oc get pods --namespace <namespace>

Which gives you an output similar to this:

NAME

example-web-app-86d9d584f8-7vjcj
example-web-app-86d9d584f8-hbvlv
example-web-app-86d9d584f8-qg499

Note

DESIRED CURRENT READY AGE

3 3 3 4m33s
READY STATUS RESTARTS
1/1 Running 0
1/1 Running @
1/1 Running @

OpenShift supports horizontal and vertical autoscaling .

AGE
5m2s
31s
31s

As we changed the number of replicas with the oc scale deployment command, the example-web-app Deployment
now differs from your local deployment_example-web-app.yaml file. Change your local deployment_example-web-app.yaml

file to match the current number of replicas and update the value replicas to 3:

32/53

https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-autoscaling.html
https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-vertical-autoscaler.html

[...]
metadata:
labels:

app: example-web-app
name: example-web-app

spec:
replicas: 3
selector:
matchLabels:

app: example-web-app

[...]

- acend gmbh

Check for uninterruptible Deployments

Now we expose our application to the internet by creating a service and a route.

First the service:

oc expose deployment example-web-app --name="example-web-app" --port=5000 --namespace <namespace>

Then the route:

oc create route edge example-web-app --port 5000 --service example-web-app --namespace <namespace>

Let's look at our Service. We should see all three corresponding Endpoints:

oc describe service example-web-app --namespace <namespace>

Name :
Namespace:
Labels:
Annotations:
Selector:
Type:

IP Family Policy:

IP Families:
IP:

IPs:

Port:
TargetPort:
Endpoints:

Session Affinity:

Events:

example-web-app
acend-test
app=example-web-app
<none>
app=example-web-app
ClusterIP
SingleStack

IPv4

172.30.89.44
172.30.89.44
<unset> 5000/TCP
5000/TCP

10.125.4.70:5000,10.126.4.137:5000,10.126.4.138:5000

None
<none>

Scaling of Pods is fast as OpenShift simply creates new containers.

You can check the availability of your Service while you scale the number of replicas up and down in your

browser: nhttp://<route hostname> .

Note

ou can find out the route’s hostname by looking at the output of oc get route .

- acend gmbh
Now, execute the corresponding loop command for your operating system in another console.

Linux:

URL=$(oc get routes example-web-app -o go-template="{{ .spec.host }}" --namespace <namespace>)
while true; do sleep 1; curl -s https://${URL}/pod/; date "+ TIME: %H:%M:%S,%3N"; done

Windows PowerShell:

while(1) {
Start-Sleep -s 1
Invoke-RestMethod https://<URL>/pod/
Get-Date -Uformat "+ TIME: %H:%M:%S,%3N"
3

Scale from 3 replicas to 1. The output shows which Pod is still alive and is responding to requests:

example-web-app-86d9d584f8-7vjcj TIME: 17:33:07,289
example-web-app-86d9d584f8-7vjcj TIME: 17:33:08,357
example-web-app-86d9d584f8-hbvlvy TIME: 17:33:09,423
example-web-app-86d9d584f8-7vjcj TIME: 17:33:10,494
example-web-app-86d9d584f8-qg499 TIME: 17:33:11,559
example-web-app-86d9d584f8-hbvlv TIME: 17:33:12,629
example-web-app-86d9d584f8-qg499 TIME: 17:33:13,695
example-web-app-86d9d584f8-hbvlv TIME: 17:33:14,771
example-web-app-86d9d584f8-hbvly TIME: 17:33:15,840
example-web-app-86d9d584f8-7vjcj TIME: 17:33:16,912
example-web-app-86d9d584f8-7vjcj TIME: 17:33:17,980
example-web-app-86d9d584f8-7vjcj TIME: 17:33:19,051
example-web-app-86d9d584f8-7vjcj TIME: 17:33:20,119
example-web-app-86d9d584f8-7vjcj TIME: 17:33:21,182
example-web-app-86d9d584f8-7vjcj TIME: 17:33:22,248
example-web-app-86d9d584f8-7vjcj TIME: 17:33:23,313
example-web-app-86d9d584f8-7vjcj TIME: 17:33:24,377
example-web-app-86d9d584f8-7vjcj TIME: 17:33:25,445
example-web-app-86d9d584f8-7vjcj TIME: 17:33:26,513

The requests get distributed amongst the three Pods. As soon as you scale down to one Pod, there should
be only one remaining Pod that responds.

Let’'s make another test: What happens if you start a new Deployment while our request generator is still
running?

oc rollout restart deployment example-web-app --namespace <namespace>

During a short period we won't get a response:

34 /53

- acend gmbh

example-web-app-86d9d584f8-7vjcj TIME: 17:37:24,121
example-web-app-86d9d584f8-7vjcj TIME: 17:37:25,189
example-web-app-86d9d584f8-7vjcj TIME: 17:37:26,262
example-web-app-86d9d584f8-7vjcj TIME: 17:37:27,328
example-web-app-86d9d584f8-7vjcj TIME: 17:37:28,395
example-web-app-86d9d584f8-7vjcj TIME: 17:37:29,459
example-web-app-86d9d584f8-7vjcj TIME: 17:37:30,531
example-web-app-86d9d584f8-7vjcj TIME: 17:37:31,596
example-web-app-86d9d584f8-7vjcj TIME: 17:37:32,662
no answer

example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:33,729
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:34,794
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:35,862
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:36,929
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:37,995
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:39,060
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:40,118
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:41,187

In our example, we use a very lightweight Pod. If we had used a more heavyweight Pod that needed a
longer time to respond to requests, we would of course see a larger gap. An example for this would be a
Java application with a startup time of 30 seconds:

example-spring-boot-2-73aln TIME: 16:48:25,251
example-spring-boot-2-73aln TIME: 16:48:26,305
example-spring-boot-2-73aln TIME: 16:48:27,400
example-spring-boot-2-73aln TIME: 16:48:28,463
example-spring-boot-2-73aln TIME: 16:48:29,507
<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>

TIME: 16:48:33,562

<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>

TIME: 16:48:34,601

example-spring-boot-3-tjdkj TIME: 16:49:20,114

example-spring-boot-3-tjdkj TIME: 16:49:21,181
example-spring-boot-3-tjdkj TIME: 16:49:22,231

It is even possible that the Service gets down, and the routing layer responds with the status code 503 as
can be seen in the example output above.

In the following chapter we are going to look at how a Service can be configured to be highly available.

Uninterruptible Deployments

The rolling update strategy makes it possible to deploy Pods without interruption. The rolling update
strategy means that the new version of an application gets deployed and started. As soon as the application
says it is ready, OpenShift forwards requests to the new instead of the old version of the Pod, and the old
Pod gets terminated.

Additionally, container health checks help OpenShift to precisely determine what state the application is in.
Basically, there are two different kinds of checks that can be implemented:

e Liveness probes are used to find out if an application is still running

* Readiness probes tell us if the application is ready to receive requests (which is especially relevant for
the above-mentioned rolling updates)

These probes can be implemented as HTTP checks, container execution checks (the execution of a
command or script inside a container) or TCP socket checks.

35/53

https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

- acend gmbh
In our example, we want the application to tell OpenShift that it is ready for requests with an appropriate
readiness probe.

Our example application has a health check context named health: http://${URL}/health

Task 5.2: Availability during deployment

Define the readiness probe on the Deployment using the following command:

oc set probe deploy/example-web-app --readiness --get-url=http://:5000/health --initial-delay-seconds=10 --timeout-seco
nds=1 --namespace <namespace>

The command above results in the following readinessProbe snippet being inserted into the Deployment:

containers:

- image: quay.io/acend/example-web-python:latest
imagePullPolicy: Always
name: example-web-app
readinessProbe:

httpGet:

path: /health

port: 5000

scheme: HTTP
initialDelaySeconds: 10
timeoutSeconds: 1

We are now going to verify that a redeployment of the application does not lead to an interruption.

Set up the loop again to periodically check the application’s response (you don’t have to set the surL
variable again if it is still defined):

URL=$(oc get routes example-web-app -o go-template="{{ .spec.host }}" --namespace <namespace>)
while true; do sleep 1; curl -s https://${URL}/pod/; date "+ TIME: %H:%M:%S,%3N"; done

Windows PowerShell:

while(1) {
Start-Sleep -s 1
Invoke-RestMethod https://<URL>/pod/
Get-Date -Uformat "+ TIME: %H:%M:%S,%3N"

}
Restart your Deployment with:

oc rollout restart deployment example-web-app --namespace <namespace>

36/53

- acend gmbh

Self-healing

Via the Deployment definition we told OpenShift how many replicas we want. So what happens if we simply
delete a Pod?

Look for a running Pod (status running) that you can bear to kill via oc get pods .

Show all Pods and watch for changes:
oc get pods -w --namespace <namespace>

Now delete a Pod (in another terminal) with the following command:
oc delete pod <pod> --namespace <namespace>

Observe how OpenShift instantly creates a new Pod in order to fulfill the desired number of running
instances.

37/53

- acend gmbh

6. Troubleshooting

This lab helps you troubleshoot your application and shows you some tools to make troubleshooting easier.

Logging into a container

Running containers should be treated as immutable infrastructure and should therefore not be modified.
However, there are some use cases in which you have to log into your running container. Debugging and
analyzing is one example for this.

Task 6.1: Shell into Pod

With OpenShift you can open a remote shell into a Pod without installing SSH by using the command oc rsh .
The command can also be used to execute any command in a Pod.

Note

If you're using Git Bash on Windows, you need to append the command with winpty.

Choose a Pod with oc get pods --namespace <namespace> and execute the following command:
oc rsh --namespace <namespace> <pod>

You now have a running shell session inside the container in which you can execute every binary available,
e.g.:

1s -1

total 12

“rw-r--r-- 1 10020700 root 8192 Nov 27 15:12 hellos.db
-rWXrwsr-x 1 web root 2454 Oct 5 08:55 run.py
drwxrwsr-x 1 web root 17 Oct 5 08:55 static
drwxrwsr-x 1 web root 63 Oct 5 08:55 templates

With exit or cTrRL+d you can leave the container and close the connection:

exit

Task 6.2: Single commands

Single commands inside a container can also be executed with oc rsh :

38/53

- acend gmbh

oc rsh --namespace <namespace> <pod> <command>

Example:

oc rsh --namespace acend-test example-web-app-8b465c687-t9g7b env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
TERM=xterm

HOSTNAME=example-web-app-8b465c687-t9g7b

NSS_SDB_USE_CACHE=no
KUBERNETES_PORT_443_TCP=tcp://172.30.0.1:443
KUBERNETES_PORT_443_TCP_PORT=443
EXAMPLE_WEB_APP_PORT_5000_TCP_PORT=5000

The debug command

One of the disadvantages of using the oc rsh command is that it depends on the container to actually run. If
the Pod can’t even start, this is a problem but also where the oc debug command comes in. The oc debug
command starts an interactive shell using the definition of a Deployment, Pod, DaemonSet, Job or even an
ImageStreamTag. In OpenShift 4 it can also be used to open a shell on a Node to analyze it.

The quick way of using it is oc debug RESOURCE/NAME but have a good look at its help page. There are some very

interesting parameters like --as-root that give you (depending on your permissions on the cluster) a very
powerful means of debugging a Pod.

Watching log files

Log files of a Pod can be shown with the following command:
oc logs <pod> --namespace <namespace>

The parameter - allows you to follow the log file (same as tail -f). With this, log files are streamed and
new entries are shown immediately.

When a Pod is in state crashLoopBackoff it means that although multiple attempts have been made, no
container inside the Pod could be started successfully. Now even though no container might be running at
the moment the oc logs command is executed, there is a way to view the logs the application might have
generated. This is achieved using the -p or --previous parameter.

Note

his command will only work on pods that had container restarts. You can check the rRestArRTs column in the
oc get pods output if this is the case.

oc logs -p <pod> --namespace <namespace>

Task 6.3: Port forwarding

39/53

- acend gmbh
OpenShift allows you to forward arbitrary ports to your development workstation. This allows you to access
admin consoles, databases, etc., even when they are not exposed externally. Port forwarding is handled by
the OpenShift control plane nodes and therefore tunneled from the client via HTTPS. This allows you to
access the OpenShift platform even when there are restrictive firewalls or proxies between your workstation
and OpenShift.

Get the name of the Pod:

oc get pod --namespace <namespace>

Then execute the port forwarding command using the Pod’s name:

Note

Best run this command in a separate shell, or in the background by adding a “&” at the end of the
command.

oc port-forward <pod> 5000:5000 --namespace <namespace>
Don’t forget to change the Pod name to your own installation. If configured, you can use auto-completion.

The output of the command should look like this:

Forwarding from 127.0.0.1:5000 -> 5000
Forwarding from [::1]:5000 -> 5000

Note

Use the additional parameter --address <IP address> (Where <IP address> refers to a NIC's IP address from your
local workstation) if you want to access the forwarded port from outside your own local workstation.

The application is now available with the following link: http://localhost:5000/ . Or try @ curl command:
curl localhost:5000

With the same concept you can access databases from your local workstation or connect your local
development environment via remote debugging to your application in the Pod.

This documentation page offers some more details about port forwarding.

Note

he oc port-forward process runs as long as it is not terminated by the user. So when done, stop it with cTRL-c.

Events

OpenShift maintains an event log with high-level information on what’s going on in the cluster. It’s possible

40/53

http://localhost:5000/
https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-port-forwarding.html

- acend gmbh

that everything looks okay at first but somehow something seems stuck. Make sure to have a look at the

events because they can give you more information if something is not working as expected.

Use the following command to list the events in chronological order:

oc get events --sort-by=.metadata.creationTimestamp --namespace <namespace>

Dry-run

To help verify changes, you can use the optional oc flag --dry-run=client -0 yaml to see the rendered YAML

definition of your Kubernetes objects, without sending it to the API.

The following oc subcommands support this flag (non-final list):

® apply

® create
® expose
® patch

® replace
® run

® set

For example, we can use the --dry-run=client flag to create a template for our Deployment:

oc create deployment example-web-app --image=quay.io/acend/example-web-python:latest --namespace acend-test --dry-run=c

lient -o yaml

The result is the following YAML output:

apiVersion: apps/vi
kind: Deployment
metadata:
creationTimestamp: null
labels:
app: example-web-app
name: example-web-app
namespace: acend-test
spec:
replicas: 1
selector:
matchLabels:
app: example-web-app
strategy: {3}
template:
metadata:
creationTimestamp: null
labels:
app: example-web-app
spec:
containers:

- image: quay.io/acend/example-web-python:latest
name: example-web
resources: {3}

status: {}

41/53

- acend gmbh

oc APl requests

If you want to see the HTTP requests oc sends to the Kubernetes API in detail, you can use the optional flag
--v=10 .

For example, to see the API request for creating a deployment:

oc create deployment test-deployment --image=quay.io/acend/example-web-python:latest --namespace <namespace> --replicas
=0 --v=10

The resulting output looks like this:

11114 15:31:13.605759 85289 request.go:1073] Request Body: {"kind":"Deployment","apiVersion":"apps/v1","metadata":{"n

ame":"test-deployment", "namespace":"acend-test","creationTimestamp":null, "labels":{"app":"test-deployment"}}, "spec":{"r

eplicas":0,"selector":{"matchLabels":{"app":"test-deployment"}}, "template":{"metadata":{"creationTimestamp":null, "label
s":{"app":"test-deployment"}}, "spec":{"containers":[{"name": "example-web", "image": "quay.io/acend/example-web-python:lat
est","resources":{}}1}}, "strategy":{}}, "status":{}}

11114 15:31:13.605817 85289 round_trippers.go:466] curl -v -XPOST -H "Accept: application/json, */*" -H "Content-Typ
e: application/json" -H "User-Agent: oc/4.11.0 (linux/amd64) kubernetes/262ac9c" -H "Authorization: Bearer <masked>" 'h
ttps://api.ocp-staging.cloudscale.puzzle.ch:6443/apis/apps/v1/namespaces/acend-test/deployments?fieldManager=kubectl-cr
eate&fieldValidation=Ignore'

11114 15:31:13.607320 85289 round_trippers.go:495] HTTP Trace: DNS Lookup for api.ocp-staging.cloudscale.puzzle.ch re
solved to [{5.102.150.82 }]

11114 15:31:13.611279 85289 round_trippers.go:510] HTTP Trace: Dial to tcp:5.102.150.82:6443 succeed

11114 15:31:13.675096 85289 round_trippers.go:553] POST https://api.ocp-staging.cloudscale.puzzle.ch:6443/apis/apps/v
1/namespaces/acend-test/deployments?fieldManager=kubectl-create&fieldValidation=Ignore 201 Created in 69 milliseconds
I1114 15:31:13.675120 85289 round_trippers.go:570] HTTP Statistics: DNSLookup 1 ms Dial 3 ms TLSHandshake 35 ms Serve
rProcessing 27 ms Duration 69 ms

11114 15:31:13.675137 85289 round_trippers.go:577] Response Headers:

I1114 15:31:13.675151 85289 round_trippers.go:580] Audit-Id: 509255b1-ee23-479a-be56-dfc3ab073864

11114 15:31:13.675164 85289 round_trippers.go:580] Cache-Control: no-cache, private

I1114 15:31:13.675181 85289 round_trippers.go:580] Content-Type: application/json

11114 15:31:13.675200 85289 round_trippers.go:580] X-Kubernetes-Pf-Flowschema-Uid: e3e152ee-768c-43c5-b350-bb3cbf
806147

11114 15:31:13.675215 85289 round_trippers.go:580] X-Kubernetes-Pf-Prioritylevel-Uid: 47f392da-68d1-4e43-9d77-ff5
f7b7ecd2e

11114 15:31:13.675230 85289 round_trippers.go:580] Content-Length: 1739

I1114 15:31:13.675244 85289 round_trippers.go:580] Date: Mon, 14 Nov 2022 14:31:13 GMT

11114 15:31:13.676116 85289 request.go:1073] Response Body: {"kind":"Deployment","apiVersion":"apps/v1", "metadata":{"
name":"test-deployment", "namespace":"acend-test","uid":"a6985d28-3caa-451f-a648-4c7cde3b51ac", "resourceVersion":"206938
5577","generation": 1, "creationTimestamp":"2022-11-14T14:31:13Z2","1abels":{"app": "test-deployment"}, "managedFields":[{"m
anager":"kubectl-create", "operation":"Update","apiVersion":"apps/v1","time":"2022-11-14T14:31:132","fieldsType":"Fields
V1", "fieldsV1":{"f:metadata":{"f:labels":{".":{},"f:app":{32}},"f:spec":{"f:progressDeadlineSeconds":{},"f:replicas":{},
"f:revisionHistoryLimit":{},"f:selector":{},"f:strategy":{"f:rollingUpdate":{".":{3}, "f:maxSurge":{},"f:maxUnavailable":
{3},"f:type": {3}, "f:template":{"f:metadata":{"f:labels":{".":{3,"f:app":{33}}, "f:spec":{"f:containers":{"k:{\"name\":\"e
xample-web\"}":{".":{3,"f:image": {3}, "f:imagePullPolicy":{},"f:name":{}, "f:resources":{},"f:terminationMessagePath":{},"
f:terminationMessagePolicy":{}}}, "f:dnsPolicy":{},"f:restartPolicy":{}, "f:schedulerName":{},"f:securityContext":{},"f:t

erminationGracePeriodSeconds":{3}}3}}} 1}, "spec":{"replicas":0,"selector":{"matchLabels":{"app":"test-deployment"}}, "temp

late":{"metadata":{"creationTimestamp":null, "labels":{"app":"test-deployment"}}, "spec":{"containers":[{"name": "example-
web","image": "quay.io/acend/example-web-python:latest", "resources":{},"terminationMessagePath":"/dev/termination-log","
terminationMessagePolicy":"File", "imagePullPolicy":"Always"}], "restartPolicy":"Always", "terminationGracePeriodSeconds":
30,"dnsPolicy":"ClusterFirst", "securityContext":{},"schedulerName":"default-scheduler"}}, "strategy":{"type":"RollingUpd

ate","rollingUpdate":{"maxUnavailable":"25%", "maxSurge":"25%"}}, "revisionHistoryLimit":10, "progressDeadlineSeconds" : 600
}, "status":{}}

deployment.apps/test-deployment created

As you can see, the output conveniently contains the corresponding curi commands which we could use in
our own code, tools, pipelines etc.

Note

If you created the deployment to see the output, you can delete it again as it's not used anywhere else
42 /53

- acend gmbh
(which is also the reason why the replicas are set to o):

oc delete deploy/test-deployment --namespace <namespace>

Progress

At this point, you are able to visualize your progress on the labs by browsing through the following page
If you are not able to open your awesome-app with localhost, because you are using a webshell, you can
also use the ingress address: https://example-web-app-<namespace>.<appdomain>/progress t0 access the dashboard.

You may need to set some extra permissions to let the dashboard monitor your progress. Have fun!

oc create rolebinding progress --clusterrole=view --serviceaccount=<namespace>:default --namespace=<namespace>

43 /53

http://localhost:5000/progress

- acend gmbh

7. Attaching a database

Numerous applications are stateful in some way and want to save data persistently, be it in a database, as

files on a filesystem or in an object store. In this lab, we are going to create a MariaDB database and
configure our application to store its data in it.

Please make sure you completed labs 2. First steps, 3. Deploying a container image and 4. Exposing a
service before you continue with this lab.

Task 7.1: Instantiate a MariaDB database

We are going to use an OpenShift template to create the database. This can be done by using the CLI.

We are going to instantiate the MariaDB Template from the openshift Project. Before we can do that, we

need to know what parameters the Template expects. Let’s find out:

oc process --parameters openshift//mariadb-ephemeral

NAME DESCRIPTION GENERATOR
ALUE

MEMORY_LIMIT Maximum amount of memory the container can use.

12Mi

NAMESPACE The OpenShift Namespace where the ImageStream resides.

penshift

DATABASE_SERVICE_NAME = The name of the OpenShift Service exposed for the database.

ariadb

MYSQL_USER Username for MariaDB user that will be used for accessing the database. expression
ser[A-Z0-91{3}

MYSQL_PASSWORD Password for the MariaDB connection user. expression
a-zA-70-91{16}

MYSQL_ROOT_PASSWORD Password for the MariaDB root user. expression
a-zA-20-91{163

MYSQL_DATABASE Name of the MariaDB database accessed.

ampledb

MARIADB_VERSION Version of MariaDB image to be used (10.2 or latest).

0.2

As you might already see, each of the parameters has a default value (“VALUE"” column). Also, the

parameters MysQL_USER , MYSQL_PASSWORD and MySQL_ROOT_PASSWORD are going to be generated (“GENERATOR" is set

to expression and “VALUE” contains a regular expression). This means we don’t necessarily have to
overwrite any of them so let’s simply use those defaults:

oc process openshift//mariadb-ephemeral -pMYSQL_DATABASE=acend_exampledb | oc apply --namespace=<namespace> -f -

The output should be:

secret/mariadb created
service/mariadb created
deploymentconfig.apps.openshift.io/mariadb created

44 /53

- acend gmbh

Task 7.2: Inspection

What just happened is that you instantiated an OpenShift Template that creates multiple resources using
the (default) values as parameters. Let's have a look at the resources that have just been created by
looking at the Template’s definition:

oc get templates -n openshift mariadb-ephemeral -o yaml

The Template’s content reveals a Secret, a Service and a DeploymentConfig.

The Secret contains the database name, user, password, and the root password. However, these values will
neither be shown with oc get nor with oc describe :

oc get secret mariadb --output yaml --namespace <namespace>

apiVersion: v1

data:
database-name: YWN1bmQtZXhhbXBszZS1kYg==
database-password: bXl1zcWxwYXNzd29yZA==
database-root-password: bX1lzcWxyb290cGFzc3dvcmQ=
database-user: YWNlbmRfdXNlcg==

kind: Secret

metadata:

type: Opaque

The reason is that all the values in the .data section are base64 encoded. Even though we cannot see the
true values, they can easily be decoded:

echo "YWN1bmQtZXhhbXBsZS1kYg==" | base64 -d

Note

There's also the oc extract command which can be used to extract the content of Secrets and ConfigMaps
linto a local directory. Use oc extract --help to see how it works.

Note

By default, Secrets are not encrypted!

However, both OpenShift and Kubernetes (1.13 and later) offer the capability to encrypt data in etcd.

Another option would be the use of a secrets management solution like Vault by HashiCorp .

The interesting thing about Secrets is that they can be reused, e.g., in different Deployments. We could
extract all the plaintext values from the Secret and put them as environment variables into the

Deployments, but it’s way easier to instead simply refer to its values inside the Deployment (as in this lab)
like this:

45/53

https://docs.openshift.com/container-platform/latest/security/encrypting-etcd.html
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://www.vaultproject.io/

- acend gmbh

spec:
template:
spec:
containers:
- name: mariadb
env:
- name: MYSQL_USER
valueFrom:
secretKeyRef':
key: database-user
name: mariadb
- name: MYSQL_PASSWORD
valueFrom:
secretKeyRef':
key: database-password
name: mariadb
- name: MYSQL_ROOT_PASSWORD
valueFrom:
secretKeyRef':
key: database-root-password
name: mariadb
- name: MYSQL_DATABASE
valueFrom:
secretKeyRef':
key: database-name
name: mariadb

Above lines are an excerpt of the MariaDB Deployment. Most parts have been cut out to focus on the
relevant lines: The references to the mariado Secret. As you can see, instead of directly defining
environment variables you can refer to a specific key inside a Secret. We are going to make further use of
this concept for our Python application.

Task 7.3: Attach the database to the application

By default, our example-web-app application uses an SQLite memory database.

However, this can be changed by defining the following environment variable to use the newly created
MariaDB database:

#MYSQL_URI=mysql://<user>:<password>@<host>/<database>
MYSQL_URI=mysql://acend_user:mysqlpassword@mariadb/acend_exampledb

The connection string our example-web-app application uses to connect to our new MariaDB, is a concatenated
string from the values of the mariadb Secret.

For the actual MariaDB host, you can either use the MariaDB Service’s ClusterIP or DNS name as the
address. All Services and Pods can be resolved by DNS using their name.

The following commands set the environment variables for the deployment configuration of the example-web-
app application:

Depending on the shell you use, the following set env. command works but inserts too many apostrophes!
Check the deployment’s environment variable afterwards or directly edit it as described further down
below.

46 /53

- acend gmbh

oc set env --from=secret/mariadb --prefix=MYSQL_ deploy/example-web-app --namespace <namespace>

and

oc set env deploy/example-web-app MYSQL_URI="mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_
DATABASE_NAME)' --namespace <namespace>

The first command inserts the values from the Secret, the second finally uses these values to put them in
the environment variable MvsqL_urR1 which the application considers.

You can also do the changes by directly editing your local deployment_example-web-app.yaml file. Find the section
which defines the containers. You should find it under:

spec:
template:
spec:
containers:
- image:

The dash before image: defines the beginning of a new container definition. The following specifications
should be inserted into this container definition:

env:
- name: MYSQL_DATABASE_NAME
valueFrom:
secretKeyRef':
key: database-name
name: mariadb
- name: MYSQL_DATABASE_PASSWORD
valueFrom:
secretKeyRef':
key: database-password
name: mariadb
- name: MYSQL_DATABASE_ROOT_PASSWORD
valueFrom:
secretKeyRef:
key: database-root-password
name: mariadb
- name: MYSQL_DATABASE_USER
valueFrom:
secretKeyRef:
key: database-user
name: mariadb
- name: MYSQL_URI
value: mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE _PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

Your file should now look like this:

47 /53

- acend gmbh

containers:

- image: quay.io/acend/example-web-python:latest
imagePullPolicy: Always
name: example-web-app

env:
- name: MYSQL_DATABASE_NAME

Then use:

oc apply -

valueFrom:
secretKeyRef':
key: database-name
name: mariadb
name: MYSQL_DATABASE_PASSWORD
valueFrom:
secretKeyRef':
key: database-password
name: mariadb
name: MYSQL_DATABASE_ROOT_PASSWORD
valueFrom:
secretKeyRef':
key: database-root-password
name: mariadb
name: MYSQL_DATABASE_USER
valueFrom:
secretKeyRef':
key: database-user
name: mariadb
name: MYSQL_URI

value: mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

f deployment_example-web-app.yaml --namespace <namespace>

to apply the changes.

The environment can also be checked with the set env command and the --1ist parameter:

oc set env deploy/example-web-app --list --namespace <namespace>

This will show the environment as follows:

deployments/example-web-app, container example-web-app

MYSQL_DATABASE_PASSWORD from secret mariadb, key database-password
MYSQL_DATABASE_ROOT_PASSWORD from secret mariadb, key database-root-password

MYSQL_DATABASE_USER from secret mariadb, key database-user
MYSQL_DATABASE_NAME from secret mariadb, key database-name

MYSQL_URI=mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

Do not proceed with the lab before all example-web-app pods are restarted successfully.

The change of the deployment definition (environment change) triggers a new rollout and all example-web-
app pods will be restarted. The application will not be connected to the database until all pods are restarted
successfully.

48 /53

- acend gmbh
In order to find out if the change worked we can either look at the container’s logs (oc logs <pod>) Or we
could register some “Hellos” in the application, delete the Pod, wait for the new Pod to be started and check
if they are still there.

Note

his does not work if we delete the database Pod as its data is not yet persisted.

Task 7.4: Manual database connection

As described in 6. Troubleshooting we can log into a Pod with oc rsh <pod> .

Show all Pods:

oc get pods --namespace <namespace>

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-app-574544fd68-qfkem 1/1 Running 0 2m20s
mariadb-f845ccdb7-hf2x5 1/1 Running 0 31m
mariadb-1-deploy 0/1 Completed @ 11m

Log into the MariaDB Pod:

Note

As mentioned in 6. Troubleshooting, remember to append the command with winpty if you're using Git Bash
on Windows.

oc rsh --namespace <namespace> <mariadb-pod-name>

You are now able to connect to the database and display the data. Login with:

mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE

Welcome to the MariaDB monitor. Commands end with ; or \g.

Your MariaDB connection id is 52810

Server version: 10.2.22-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [acend_exampledb]>

Show all tables with:

49 /53

- acend gmbh

show tables;
Show any entered “Hellos” with:

select * from hello;

Task 7.5: Import a database dump

Our task is now to import this dump.sqgl into the MariaDB database running as a Pod. Use the mysql
command line utility to do this. Make sure the database is empty beforehand. You could also delete and
recreate the database.

Note

ou can also copy local files into a Pod using oc cp. Be aware that the tar binary has to be present inside the
container and on your operating system in order for this to work! Install tar on UNIX systems with e.g. your
package manager, on Windows there’s e.g. cwRsync . If you cannot install tar on your host, there’s also the
possibility of logging into the Pod and using curl -0 <url>.

Solution

This is how you copy the database dump into the MariaDB Pod.
Download the dump.sql or get it with curl:

curl -0 https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/du
mp.sql

Copy the dump into the MariaDB Pod:

oc cp ./dump.sgl <podname>:/tmp/ --namespace <namespace>
This is how you log into the MariaDB Pod:

oc rsh --namespace <namespace> <podname>
This command shows how to drop the whole database:

mysqgl -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE

50/53

https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/dump.sql
https://www.itefix.net/cwrsync
https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/dump.sql

- acend gmbh

drop database "acend_exampledb;
create database "acend_exampledb;
exit

Import a dump:

mysqgl -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE < /tmp/dump.sql

Check your app to see the imported “Hellos”.

Note
You can find your app URL by looking at your route:

oc get route --namespace <namespace>

Note

A database dump can be created as follows:

oc rsh --namespace <namespace> <podname>

mysgldump --user=$MYSQL_USER --password=$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE > /tmp/dump.sql

oc cp <podname>:/tmp/dump.sql /tmp/dump.sql

51/53

- acend gmbh

8. Persistent storage

By default, data in containers is not persistent as was the case e.q. in 7. Attaching a database. This means
that the data written in a container is lost as soon as it does not exist anymore. We want to prevent this
from happening. One possible solution to this problem is to use persistent storage.

Request storage

Attaching persistent storage to a Pod happens in two steps. The first step includes the creation of a so-
called PersistentVolumeClaim (PVC) in our namespace. This claim defines amongst other things what size
we would like to get.

The PersistentVolumeClaim only represents a request but not the storage itself. It is automatically going to
be bound to a PersistentVolume by OpenShift, one that has at least the requested size. If only volumes exist
that have a bigger size than was requested, one of these volumes is going to be used. The claim will
automatically be updated with the new size. If there are only smaller volumes available, the claim cannot be
fulfilled as long as no volume with the exact same or larger size is created.

Attaching a volume to a Pod

In a second step, the PVC from before is going to be attached to the Pod. In 5. Scaling we used oc set to
add a readiness probe to the Deployment. We are now going to do the same and insert the
PersistentVolume.

Task 8.1: Add a PersistentVolume

The oc set volume command makes it possible to create a PVC and attach it to a Deployment in one fell
swoop:

Note

If you are using Windows, your shell might assume that it has to use the POSIX-to-Windows path conversion
for the mount path /var/1ib/mysql . PowerShell is known to not do this while, e.g., Git Bash does.

Prepend your command with Msys_No_paTHconv=1 if the resulting mount path was mistakenly converted.

oc set volume dc/mariadb --add --name=mariadb-data --claim-name=mariadb-data --type persistentVolumeClaim --mount-path=
/var/lib/mysql --claim-size=1G --overwrite --namespace <namespace>

With the instruction above we create a PVC named mariadb-data of 1Gi in size, attach it to the
DeploymentConfig mariads and mount it at /var/lib/mysql . This is where the MariaDB process writes its data
by default so after we make this change, the database will not even notice that it is writing in a
PersistentVolume.

Note

Because we just changed the DeploymentConfig with the oc set command, a new Pod was automatically
redeployed. This unfortunately also means that we just lost the data we inserted before.

We need to redeploy the application pod, our application automatically creates the database schema at

52/53

- acend gmbh
startup time. Wait for the database pod to be started fully before restarting the application pod.

If you want to force a redeployment of a Pod, you can use this:
oc rollout restart deployment example-web-app --namespace <namespace>

Using the command oc get persistentvolumeclaim OF oc get pvc , We can display the freshly created
PersistentVolumeClaim:

oc get pvc --namespace <namespace>

Which gives you an output similar to this:

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mariadb-data Bound pvc-2cb78deb-d157-11e8-a406-42010a840034 1Gi RWO standard 11s

The two columns status and voLuMe show us that our claim has been bound to the PersistentVolume pvc-
2cb78deb-d157-11e8-a406-42010a840034 .

Error case

If the container is not able to start it is the right moment to debug it! Check the logs from the container and
search for the error.

oc logs mariadb-f845ccdb7-hf2x5 --namespace <namespace>

Note

If the container won’t start because the data directory already has files in it, use the oc debug command
mentioned in 7. Attaching a database to check its content and remove it if necessary.

Task 8.2: Persistence check
Restore data
Repeat the task to import a database dump .

Test

Scale your MariaDB Pod to 0 replicas and back to 1. Observe that the new Pod didn’t loose any data.

53/53

file:///attaching-a-database/#task-75-import-a-database-dump

	Setup
	1. Web terminal
	2. Local usage
	3. Other ways to work with OpenShift

	Labs
	1. Introduction
	2. First steps
	3. Deploying a container image
	4. Exposing a service
	5. Scaling
	6. Troubleshooting
	7. Attaching a database
	8. Persistent storage

