
Setup

Setup instructions
This training depends on oc , the OpenShift command-line interface.

You have the choice of either using OpenShift’s web terminal or installing oc locally.

If you prefer to not install anything on your computer, follow the instructions on the 1. Web terminal page.

The 2. Local usage chapter explains how to install oc for the respective operating system.

Also have a look at the 3. Other ways to work with OpenShift, which is, however, totally optional.

Warning
In case you’ve already installed oc, please make sure you have an up-to-date version.

- acend gmbh

1 / 53

1. Web terminal
Using OpenShift’s web terminal might be more convenient for you as it doesn’t require you to install oc

locally on your computer.

Task 1.1: Login on the web console
First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 1.2: Initialize terminal

In OpenShift’s web console:

1. Click on the terminal icon on the upper right
2. Choose to create a new project
3. Name your project <username>-terminal where <username> is the username given to you during this training
4. Click Start

Note
If you do change your mind, head right over to 2. Local usage.

Warning
Make sure to create a dedicated project for the web terminal!

- acend gmbh

2 / 53

Task 1.3: Verification
After the initial setup, you’re presented with a web terminal. Tools like oc are already installed and you’re
also already logged in.

You can check this by executing the following command:

You’re now ready to go!

oc whoami

Warning
The terminal project is only meant to be used for the web terminal resources. Always check that you do not
use the terminal namespace for the other labs!

- acend gmbh

3 / 53

Next steps
If you’re interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you’re ready to go, head on over to the labs and begin with the training!

- acend gmbh

4 / 53

file:///docs/

2. Local usage
Please follow the instructions on the 2.1. cli installation page to install oc .

If you already have successfully installed oc , please verify that your installed version is current. Then, head
over to 2.2. Console login to log in.

2.1. cli installation
The oc command is the command-line interface to work with one or several OpenShift clusters.

The client is written in Go and you can run the single binary on the following operating systems:

2.1.1. Windows
2.1.2. macOS
2.1.3. Linux

- acend gmbh

5 / 53

2.2. Console login

Task 2.2.1: Login on the web console
First of all, open your browser. Then, log in on OpenShift’s web console using the URL and credentials
provided by your trainer.

Task 2.2.2: Login on the command line
In order to log in on the command line, copy the login command from the web console.

To do that, open the Web Console and click on your username that you see at the top right, then choose
Copy Login Command.

A new tab or window will open in your browser.

The page now displays a link Display token. Click on it and copy the command under Log in with this
token.

Now paste the copied command on the command line.

Task 2.2.3: Verify login
If you now execute oc version you should see something like this (your output may vary):

Client Version: 4.11.2
Kustomize Version: v4.5.4
Kubernetes Version: v1.24.0+dc5a2fd

First steps with oc
The oc binary has many subcommands. Invoke oc --help (or simply -h) to get a list of all subcommands; oc

<subcommand> --help gives you detailed help about a subcommand.

Note
You might need to log in again.

- acend gmbh

6 / 53

Next steps
If you’re interested, have a look at the 3. Other ways to work with OpenShift, which is however totally
optional.

When you’re ready to go, head on over to the labs and begin with the training!

- acend gmbh

7 / 53

file:///docs/

3. Other ways to work with OpenShift

Other ways to work with OpenShift
If you don’t have access to a running OpenShift development environment (anymore), there are several
options to get one.

OpenShift Developer Sandbox : 30 days of no-cost access to a shared cluster on OpenShift
OpenShift Local : A local OpenShift environmennt running on your machine
OKD single node installation : OKD (OpenShift community edition) single node installation

Next steps
When you’re ready to go, head on over to the labs and begin with the training!

- acend gmbh

8 / 53

https://developers.redhat.com/developer-sandbox
https://developers.redhat.com/products/openshift-local/overview
https://docs.okd.io/latest/installing/installing_sno/install-sno-preparing-to-install-sno.html
file:///docs/

Labs
The purpose of these labs is to convey OpenShift basics by providing hands-on tasks for people. OpenShift
will allow you to deploy and deliver your software packaged as containers in an easy, straightforward way.

Goals of these labs:

Help you get started with this modern technology
Explain the basic concepts to you
Show you how to deploy your first applications on Kubernetes

Additional Docs
OpenShift Docs

Additional Tutorials
OpenShift Interactive Learning Portal

- acend gmbh

9 / 53

https://docs.openshift.com/
https://learn.openshift.com/

1. Introduction
In this lab, we will introduce the core concepts of OpenShift.

All explanations and resources used in this lab give only a quick and not detailed overview. As OpenShift is
based on Kubernetes, its concepts also apply to OpenShift which you can find in the official Kubernetes
documentation .

Core concepts
With the open source software OpenShift, you get a platform to build and deploy your application in a
container as well as operate it at the same time. Therefore, OpenShift is also called a Container Platform, or
the term Container-as-a-Service (CaaS) is used.

Depending on the configuration the term Platform-as-a-Service (PaaS) works as well.

Container engine
OpenShift’s underlying container engine is CRI-O . Earlier releases used Docker .

Docker was originally created to help developers test their applications in their continuous integration
environments. Nowadays, system admins also use it. CRI-O doesn’t exist as long as Docker does. It is a
“lightweight container runtime for Kubernetes” and is fully OCI-compliant .

Overview
OpenShift basically consists of control plane and worker nodes.

- acend gmbh

10 / 53

https://kubernetes.io/docs/concepts/
https://cri-o.io/
https://www.docker.com/
https://github.com/opencontainers/runtime-spec

Control plane and worker nodes
The control plane components are the API server, the scheduler and the controller manager. The API server
itself represents the management interface. The scheduler and the controller manager decide how
applications should be deployed on the cluster. Additionally, the state and configuration of the cluster itself
are controlled in the control plane components.

Worker nodes are also known as compute nodes, application nodes or minions, and are responsible for
running the container workload (applications). The control plane for the worker nodes is implemented in the
control plane components. The hosts running these components were historically called masters.

Containers and images
The smallest entities in Kubernetes and OpenShift are Pods, which resemble your containerized application.

Using container virtualization, processes on a Linux system can be isolated up to a level where only the
predefined resources are available. Several containers can run on the same system without “seeing” each
other (files, process IDs, network). One container should contain one application (web server, database,
cache, etc.). It should be at least one part of the application, e.g. when running a multi-service middleware.
In a container itself any process can be started that runs natively on your operating system.

Containers are based on images. An image represents the file tree, which includes the binary, shared
libraries and other files which are needed to run your application.

A container image is typically built from a Containerfile or Dockerfile , which is a text file filled with
instructions. The end result is a hierarchically layered binary construct. Depending on the backend, the
implementation uses overlay or copy-on-write (COW) mechanisms to represent the image.

Layer example for a Tomcat application:

1. Base image (Alpine)
2. Install Java
3. Install Tomcat
4. Install App

The pre-built images under version control can be saved in an image registry and can then be used by the
container platform.

Namespaces and Projects
Namespaces in Kubernetes represent a logical segregation of unique names for entities (Pods, Services,
Deployments, ConfigMaps, etc.).

In OpenShift, users do not directly create Namespaces, they create Projects. A Project is a Namespace with
additional annotations.

Permissions and roles can be bound on a per-project basis. This way, a user can control his own resources
inside a Project.

Note
OpenShift’s concept of a Project does not coincide with Rancher’s.

Note
Some resources are valid cluster-wise and cannot be set and controlled on a namespace basis.

- acend gmbh

11 / 53

Pods
A Pod is the smallest entity in Kubernetes and OpenShift.

It represents one instance of your running application process. The Pod consists of at least one container
which contains your application. The application ports from inside the Pod are exposed via Services.

Services
A service represents a static endpoint for your application in the Pod. As a Pod and its IP address typically
are considered dynamic, the IP address of the Service does not change when changing the application
inside the Pod. If you scale up your Pods, you have an automatic internal load balancing towards all Pod IP
addresses.

There are different kinds of Services:

ClusterIP : Default virtual IP address range
NodePort : Same as ClusterIP plus open ports on the nodes
LoadBalancer : An external load balancer is created, only works in cloud environments, e.g. AWS ELB
ExternalName : A DNS entry is created, also only works in cloud environments

A Service is unique inside a Namespace.

Deployment
Have a look at the official documentation .

Volume
Have a look at the official documentation .

Job
Have a look at the official documentation .

History
There is a official Kubernetes Documentary available on Youtube.

Kubernetes: The Documentary [PART 1]
Kubernetes: The Documentary [PART 2]

Inspired by the open source success of Docker in 2013 and seeing the need for innovation in the area of
large-scale cloud computing, a handful of forward-thinking Google engineers set to work on the container
orchestrator that would come to be known as Kubernetes– this new tool would forever change the way the
internet is built.

These engineers overcome technical challenges, resistance to open source from within, naysayers, and
intense competition from other big players in the industry.

Most engineers know about “The Container Orchestrator Wars’’ but most people would not be able to
explain exactly what happened, and why it was Kubernetes that ultimately came out on top.

There is no topic more relevant to the current open source landscape. This film captures the story directly
from the people who lived it, featuring interviews with prominent engineers from Google, Red Hat, Twitter

- acend gmbh

12 / 53

https://docs.openshift.com/container-platform/latest/applications/deployments/what-deployments-are.html
https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-volumes.html
https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html
https://www.youtube.com/watch?v=BE77h7dmoQU
https://www.youtube.com/watch?v=318elIq37PE

and others.

1.1. YAML
YAML Ain’t Markup Language (YAML) is a human-readable data-serialization language. YAML is not a
programming language. It is mostly used for storing configuration information.

As you will see a lot of YAML in our Kubernetes basics course, we want to make sure you can read and write
YAML. If you are not yet familiar with YAML, this introduction is waiting for you. Otherwise, feel free to skip it
or come back later if you meet some less familiar YAML stuff.

This introduction is based on the YAML Tutorial from cloudbees.com .

For more information and the full spec have a look at https://yaml.org/

A simple file
Let’s look at a YAML file for an overview:

The file starts with three dashes. These dashes indicate the start of a new YAML document. YAML supports
multiple documents, and compliant parsers will recognize each set of dashes as the beginning of a new one.

Then we see the construct that makes up most of a typical YAML document: a key-value pair. foo is a key
that points to a string value: foo is not bar

YAML knows four different data types:

foo & bar are strings.
pi is a floating-point number
awesome is a boolean
kubernetes-birth-year is an integer

Note
Data serialization is the process of converting data objects, or object states present in complex data
structures, into a stream of bytes for storage, transfer, and distribution in a form that can allow recovery of
its original structure.

foo: "foo is not bar"
bar: "bar is not foo"
pi: 3.14159
awesome: true
kubernetes-birth-year: 2015
cloud-native:
 - scalable
 - dynamic
 - cloud
 - container
kubernetes:
 version: "1.22.0"
 deployed: true
 applications:
 - name: "My App"
 location: "public cloud"

- acend gmbh

13 / 53

https://www.cloudbees.com/blog/yaml-tutorial-everything-you-need-get-started
https://yaml.org/

You can enclose strings in single or double-quotes or no quotes at all. YAML recognizes unquoted numerals
as integers or floating point.

The cloud-native item is an array with four elements, each denoted by an opening dash. The elements in
cloud-native are indented with two spaces. Indentation is how YAML denotes nesting. The number of spaces

can vary from file to file, but tabs are not allowed.

Finally, kubernetes is a dictionary that contains a string version , a boolean deployed and an array applications

where the item of the array contains two strings .

YAML supports nesting of key-values, and mixing types.

Indentation and Whitespace
Whitespace is part of YAML’s formatting. Unless otherwise indicated, newlines indicate the end of a field.
You structure a YAML document with indentation. The indentation level can be one or more spaces. The
specification forbids tabs because tools treat them differently.

Comments
Comments begin with a pound sign. They can appear after a document value or take up an entire line.

YAML data types
Values in YAML’s key-value pairs are scalar. They act like the scalar types in languages like Perl, Javascript,
and Python. It’s usually good enough to enclose strings in quotes, leave numbers unquoted, and let the
parser figure it out. But that’s only the tip of the iceberg. YAML is capable of a great deal more.

Key-Value Pairs and Dictionaries
The key-value is YAML’s basic building block. Every item in a YAML document is a member of at least one
dictionary. The key is always a string. The value is a scalar so that it can be any datatype. So, as we’ve
already seen, the value can be a string, a number, or another dictionary.

Numeric types
YAML recognizes numeric types. We saw floating point and integers above. YAML supports several other
numeric types. An integer can be decimal, hexadecimal, or octal.

YAML supports both fixed and exponential floating point numbers.

This is a full line comment
foo: bar # this is a comment, too

foo: 12345
bar: 0x12d4
plop: 023332

foo: 1230.15
bar: 12.3015e+05

- acend gmbh

14 / 53

Finally, we can represent not-a-number (NAN) or infinity.

Foo is infinity. Bar is negative infinity, and plop is NAN.

Strings
YAML strings are Unicode. In most situations, you don’t have to specify them in quotes.

But if we want escape sequences handled, we need to use double quotes.

YAML processes the first value as ending with a carriage return and linefeed. Since the second value is not
quoted, YAML treats the \n as two characters.

YAML will not escape strings with single quotes, but the single quotes do avoid having string contents
interpreted as document formatting. String values can span more than one line. With the fold (greater than)
character, you can specify a string in a block.

But it’s interpreted without the newlines: bar : this is not a normal string it spans more than one line see?

The block (pipe) character has a similar function, but YAML interprets the field exactly as is.

foo: .inf
bar: -.Inf
plop: .NAN

foo: this is a normal string

foo: "this is not a normal string\n"
bar: this is not a normal string\n

foo: this is not a normal string
bar: this is not a normal string\n

bar: >
 this is not a normal string it
 spans more than
 one line
 see?

- acend gmbh

15 / 53

So, we see the newlines where they are in the document.

Nulls
You enter nulls with a tilde or the unquoted null string literal.

Booleans
YAML indicates boolean values with the keywords True, On and Yes for true. False is indicated with False,
Off, or No.

Arrays
You can specify arrays or lists on a single line.

Or, you can put them on multiple lines.

bar: |
 this is not a normal string it
 spans more than
 one line
 see?

bar : this is not a normal string it
spans more than
one line
see?

foo: ~
bar: null

foo: True
bar: False
light: On
TV: Off

items: [1, 2, 3, 4, 5]
names: ["one", "two", "three", "four"]

- acend gmbh

16 / 53

The multiple line format is useful for lists that contain complex objects instead of scalars.

An array can contain any valid YAML value. The values in a list do not have to be the same type.

Dictionaries
We covered dictionaries above, but there’s more to them. Like arrays, you can put dictionaries inline. We
saw this format above.

We’ve seen them span lines before.

And, of course, they can be nested and hold any value.

items:
 - 1
 - 2
 - 3
 - 4
 - 5
names:
 - "one"
 - "two"
 - "three"
 - "four"

items:
 - things:
 thing1: huey
 things2: dewey
 thing3: louie
 - other things:
 key: value

foo: { thing1: huey, thing2: louie, thing3: dewey }

foo: bar
bar: foo

foo:
 bar:
 - bar
 - rab
 - plop

- acend gmbh

17 / 53

2. First steps
In this lab, we will interact with the OpenShift cluster for the first time.

Projects
As a first step on the cluster, we are going to create a new Project.

A Project is a logical design used in OpenShift to organize and separate your applications, Deployments,
Pods, Ingresses, Services, etc. on a top-level basis. Authorized users inside a Project are able to manage
those resources. Project names have to be unique in your cluster.

Task 2.2: Create a Project
Create a new Project in the lab environment. The oc help output can help you figure out the right command.

Solution
To create a new Project on your cluster use the following command:

Task 2.3: Discover the OpenShift web console
Discover the different menu entries in the two views, the Developer and the Administrator view.

Display all existing Pods in the previously created Project with oc (there shouldn’t yet be any):

Warning
Please make sure you completed Setup before you continue with this lab.

Note
Please choose an identifying name for your Project, e.g. your initials or name as a prefix. We are going to
use <namespace> as a placeholder for your created Project.

oc new-project <namespace>

Note
In order to declare what Project to use, you have several possibilities:

Some prefer to explicitly select the Project for each oc command by adding --namespace <namespace> or -n

<namespace>

By using the following command, you can switch into another Project instead of specifying it for each
oc command

oc project <namespace>

- acend gmbh

18 / 53

oc get pod --namespace <namespace>

Note
With the command oc get you can display all kinds of resources.

- acend gmbh

19 / 53

3. Deploying a container image
In this lab, we are going to deploy our first container image and look at the concepts of Pods, Services, and
Deployments.

Task 3.1: Start and stop a single Pod
After we’ve familiarized ourselves with the platform, we are going to have a look at deploying a pre-built
container image from Quay.io or any other public container registry.

In OpenShift we have used the <project> identifier to select the correct project. Please use the same
identifier in the context <namespace> to do the same for all upcoming labs. Ask your trainer if you want more
information on that.

First, we are going to directly start a new Pod. For this we have to define our Kubernetes Pod resource
definition. Create a new file pod_awesome-app.yaml with the content below.

Now we can apply this with:

Note
Alternatively, you can create the Pod definition on the web console. Simply click on the plus sign button
on the upper right (1), make sure you’ve selected the correct Project (2) and paste the content.

apiVersion: v1
kind: Pod
metadata:
 name: awesome-app
spec:
 containers:
 - image: quay.io/acend/example-web-go:latest
 imagePullPolicy: Always
 name: awesome-app
 resources:
 limits:
 cpu: 20m
 memory: 32Mi
 requests:
 cpu: 10m
 memory: 16Mi

Note
If you used the web console to import the Pod’s YAML definition, don’t execute the following command.

- acend gmbh

20 / 53

The output should be:

pod/awesome-app created

Use oc get pods --namespace <namespace> in order to show the running Pod:

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
awesome-app 1/1 Running 0 1m24s

Have a look at your awesome-app Pod inside the OpenShift web console.

Now delete the newly created Pod:

Task 3.2: Create a Deployment
In some use cases it can make sense to start a single Pod. But this has its downsides and is not really a
common practice. Let’s look at another concept which is tightly coupled with the Pod: the so-called
Deployment. A Deployment ensures that a Pod is monitored and checks that the number of running Pods
corresponds to the number of requested Pods.

To create a new Deployment we first define our Deployment in a new file deployment_example-web-go.yaml with
the content below.

oc apply -f pod_awesome-app.yaml --namespace <namespace>

oc get pods --namespace <namespace>

oc delete pod awesome-app --namespace <namespace>

Note
You could, of course, again import the YAML on the web console as described above.

- acend gmbh

21 / 53

And with this we create our Deployment inside our already created namespace:

The output should be:

deployment.apps/example-web-go created

We’re using a simple sample application written in Go, which you can find built as an image on Quay.io or as
source code on GitHub .

OpenShift creates the defined and necessary resources, pulls the container image (in this case from
Quay.io) and deploys the Pod.

Use the command oc get with the -w parameter in order to get the requested resources and afterward
watch for changes.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: example-web-go
 name: example-web-go
spec:
 replicas: 1
 selector:
 matchLabels:
 app: example-web-go
 template:
 metadata:
 labels:
 app: example-web-go
 spec:
 containers:
 - image: quay.io/acend/example-web-go:latest
 name: example-web-go
 resources:
 requests:
 cpu: 10m
 memory: 16Mi
 limits:
 cpu: 20m
 memory: 32Mi

Note
If you used the web console to import the Deployment’s YAML definition, don’t execute the following
command.

oc apply -f deployment_example-web-go.yaml --namespace <namespace>

Note
The oc get -w command will never end unless you terminate it with CTRL-c.

oc get pods -w --namespace <namespace>

- acend gmbh

22 / 53

https://quay.io/repository/acend/example-web-go
https://github.com/acend/awesome-apps

This process can last for some time depending on your internet connection and if the image is already
available locally.

Creating Kubernetes resources
There are two fundamentally different ways to create Kubernetes resources. You’ve already seen one way:
Writing the resource’s definition in YAML (or JSON) and then applying it on the cluster using oc apply .

The other variant is to use helper commands. These are more straightforward: You don’t have to copy a
YAML definition from somewhere else and then adapt it. However, the result is the same. The helper
commands just simplify the process of creating the YAML definitions.

As an example, let’s look at creating above deployment, this time using a helper command instead. If you
already created the Deployment using above YAML definition, you don’t have to execute this command:

It’s important to know that these helper commands exist. However, in a world where GitOps concepts have
an ever-increasing presence, the idea is not to constantly create these resources with helper commands.
Instead, we save the resources’ YAML definitions in a Git repository and leave the creation and management
of those resources to a tool.

Task 3.3: Viewing the created resources
Display the created Deployment using the following command:

A Deployment defines the following facts:

Update strategy: How application updates should be executed and how the Pods are exchanged
Containers

Which image should be deployed
Environment configuration for Pods
ImagePullPolicy

Note
Instead of using the -w parameter you can also use the watch command which should be available on most
Linux distributions:

watch oc get pods --namespace <namespace>

Note
If you want to create your own container images and use them with OpenShift, you definitely should have a
look at these best practices and apply them. This image creation guide may be for OpenShift, however it
also applies to Kubernetes and other container platforms.

oc create deployment example-web-go --image=quay.io/acend/example-web-go:latest --namespace <namespace>

oc get deployments --namespace <namespace>

- acend gmbh

23 / 53

https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

The number of Pods/Replicas that should be deployed

By using the -o (or --output) parameter we get a lot more information about the deployment itself. You can
choose between YAML and JSON formatting by indicating -o yaml or -o json . In this training we are going to
use YAML, but please feel free to replace yaml with json if you prefer.

After the image has been pulled, OpenShift deploys a Pod according to the Deployment:

which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-go-69b658f647-xnm94 1/1 Running 0 39s

The Deployment defines that one replica should be deployed — which is running as we can see in the
output. This Pod is not yet reachable from outside the cluster.

Task 3.4: Verify the Deployment in the OpenShift web
console
Try to display the logs from the example application in the OpenShift web console.

Task 3.5: Build the image yourself
Up until now, we’ve used pre-built images from Quay.io. OpenShift offers the ability to build images on the
cluster itself using different strategies :

Docker build strategy
Source-to-image build strategy
Custom build strategy
Pipeline build strategy

We are going to use the Docker build strategy. It expects:

[…] a repository with a Dockerfile and all required artifacts in it to produce a runnable image.

All of these requirements are already fulfilled in the source code repository on GitHub , so let’s build the
image!

First we clean up the already existing Deployment:

oc get deployment example-web-go -o yaml --namespace <namespace>

oc get pods --namespace <namespace>

Note
Have a look at OpenShift’s documentation to learn more about the other available build strategies.

- acend gmbh

24 / 53

https://docs.openshift.com/container-platform/latest/cicd/builds/understanding-image-builds.html
https://github.com/acend/awesome-apps/tree/main/go
https://docs.openshift.com/container-platform/latest/cicd/builds/understanding-image-builds.html

We are now ready to create the build and deployment, all in one command:

Let’s watch the image’s build process:

The message Push successful signifies the image’s successful build and push to OpenShift’s internal image.

In the above command you discovered a new resource type bc which is the abbreviation for BuildConfig. A
BuildConfig defines how a container image has to be built.

A Build resource represents the build process itself based upon the BuildConfig’s definition. A build takes
place in a Pod on OpenShift, so instead of referencing the BuildConfig in our oc logs command, we could
have used the build Pod’s log output. However, referencing the BuildConfig has the advantage that it can be
reused each time a build is run. A build Pod changes its name with every build.

Have a look at the new Deployment created by the oc new-app command:

It looks the same as before with the only essential exception that it uses the image we just built instead of
the pre-built image from Quay.io:

 ...
 spec:
 containers:
 - image: image-registry.openshift-image-registry.svc:5000/<namespace>/awesome-app@sha256:4cd671273a837453464f7264
afe845b299297ebe032f940fd005cf9c40d1e76c
 ...

oc delete deployment example-web-go --namespace <namespace>

oc new-app --name example-web-go --labels app=example-web-go --context-dir go/ --strategy docker https://github.com/ace
nd/awesome-apps.git --namespace <namespace>

oc logs bc/example-web-go --follow --namespace <namespace>

oc get deployment example-web-go -o yaml --namespace <namespace>

- acend gmbh

25 / 53

4. Exposing a service
In this lab, we are going to make the freshly deployed application from the last lab available online.

Task 4.1: Create a ClusterIP Service
The command oc apply -f deployment_example-web-go.yaml from the last lab creates a Deployment but no Service.
A OpenShift Service is an abstract way to expose an application running on a set of Pods as a network
service. For some parts of your application (for example, frontends) you may want to expose a Service to an
external IP address which is outside your cluster.

OpenShift ServiceTypes allow you to specify what kind of Service you want. The default is ClusterIP .

Type values and their behaviors are:

ClusterIP : Exposes the Service on a cluster-internal IP. Choosing this value only makes the Service
reachable from within the cluster. This is the default ServiceType.

NodePort : Exposes the Service on each Node’s IP at a static port (the NodePort). A ClusterIP Service, to
which the NodePort Service routes, is automatically created. You’ll be able to contact the NodePort
Service from outside the cluster, by requesting <NodeIP>:<NodePort>.

LoadBalancer : Exposes the Service externally using a cloud provider’s load balancer. NodePort and
ClusterIP Services, to which the external load balancer routes, are automatically created.

ExternalName : Maps the Service to the contents of the externalName field (e.g. foo.bar.example.com), by
returning a CNAME record with its value. No proxying of any kind is set up.

You can also use Ingress to expose your Service. Ingress is not a Service type, but it acts as the entry point
for your cluster. Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the
cluster. Traffic routing is controlled by rules defined on the Route resource. A Route may be configured to
give Services externally reachable URLs, load balance traffic, terminate SSL / TLS, and offer name-based
virtual hosting. An Ingress controller is responsible for fulfilling the route, usually with a load balancer,
though it may also configure your edge router or additional frontends to help handle the traffic.

In order to create a Route, we first need to create a Service of type ClusterIP .

To create the Service add a new file svc-web-go.yaml with the following content:

And then apply the file with:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: example-web-go
 name: example-web-go
spec:
 ports:
 - port: 5000
 protocol: TCP
 targetPort: 5000
 selector:
 app: example-web-go
 type: ClusterIP

- acend gmbh

26 / 53

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/#publishing-services-service-types

There is also am imperative command to create a service and expose your application which can be used
instead of the yaml file with the oc apply ... command

oc expose deployment example-web-go --type=ClusterIP --name=example-web-go --port=5000 --target-port=5000 --namespace <
namespace>

You will get the error message reading Error from server (AlreadyExists): services "example-web-go" already exists

here. This is because the oc new-app command you executed during lab 3 already created a service. This is
the default behavior of oc new-app while oc create deployment doesn’t have this functionality.

As a consequence, the oc expose command above doesn’t add anything new but it demonstrates how to
easily create a service based on a deployment.

Let’s have a more detailed look at our Service:

Which gives you an output similar to this:

By executing the following command:

You get additional information:

oc apply -f svc-web-go.yaml --namespace <namespace>

oc get services --namespace <namespace>

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
example-web-go ClusterIP 10.43.91.62 <none> 5000/TCP

Note
Service IP (CLUSTER-IP) addresses stay the same for the duration of the Service’s lifespan.

oc get service example-web-go -o yaml --namespace <namespace>

- acend gmbh

27 / 53

apiVersion: v1
kind: Service
metadata:
 ...
 labels:
 app: example-web-go
 managedFields:
 ...
 name: example-web-go
 namespace: <namespace>
 ...
spec:
 clusterIP: 10.43.91.62
 externalTrafficPolicy: Cluster
 ports:
 - port: 5000
 protocol: TCP
 targetPort: 5000
 selector:
 app: example-web-go
 sessionAffinity: None
 type: ClusterIP
status:
 loadBalancer: {}

The Service’s selector defines which Pods are being used as Endpoints. This happens based on labels. Look
at the configuration of Service and Pod in order to find out what maps to what:

...
 selector:
 app: example-web-go
...

With the following command you get details from the Pod:

Let’s have a look at the label section of the Pod and verify that the Service selector matches the Pod’s
labels:

...
 labels:
 app: example-web-go
...

This link between Service and Pod can also be displayed in an easier fashion with the oc describe command:

oc get service example-web-go -o yaml --namespace <namespace>

Note
First, get all Pod names from your namespace with (oc get pods --namespace <namespace>) and then replace
<pod> in the following command. If you have installed and configured the bash completion, you can also
press the TAB key for autocompletion of the Pod’s name.

oc get pod <pod> -o yaml --namespace <namespace>

- acend gmbh

28 / 53

Name: example-web-go
Namespace: example-ns
Labels: app=example-web-go
Annotations: <none>
Selector: app=example-web-go
Type: ClusterIP
IP: 10.39.240.212
Port: <unset> 5000/TCP
TargetPort: 5000/TCP
Endpoints: 10.36.0.8:5000
Session Affinity: None
External Traffic Policy: Cluster
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------

The Endpoints show the IP addresses of all currently matched Pods.

Task 4.2: Expose the Service
With the ClusterIP Service ready, we can now create the Route resource.

The output should be:

route.route.openshift.io/example-web-go created

We are now able to access our app via the freshly created route at https://example-web-go-<namespace>.<appdomain>

Find your actual app URL by looking at your route (HOST/PORT):

Browse to the URL and check the output of your app.

oc describe service example-web-go --namespace <namespace>

oc create route edge example-web-go --service example-web-go --namespace <namespace>

oc get route --namespace <namespace>

Note
If the site doesn’t load, check if you are using the http:// , not the https:// protocol, which might be the
default in your browser.

Note
The <appdomain> is the default domain under which your applications will be accessible and is provided by
your trainer. You can also use oc get route example-web-go to see the exact value of the exposed route.

- acend gmbh

29 / 53

Task 4.4: For fast learners
Have a closer look at the resources created in your namespace <namespace> with the following commands and
try to understand them:

oc describe namespace <namespace>

oc get all --namespace <namespace>

oc describe <resource> <name> --namespace <namespace>

oc get <resource> <name> -o yaml --namespace <namespace>

- acend gmbh

30 / 53

5. Scaling
In this lab, we are going to show you how to scale applications on OpenShift. Furthermore, we show you how
OpenShift makes sure that the number of requested Pods is up and running and how an application can tell
the platform that it is ready to receive requests.

Task 5.1: Scale the example application
Create a new Deployment in your Namespace. So again, lets define the Deployment using YAML in a file
deployment_example-web-app.yaml with the following content:

and then apply with:

If we want to scale our example application, we have to tell the Deployment that we want to have three
running replicas instead of one. Let’s have a closer look at the existing ReplicaSet:

Note
This lab does not depend on previous labs. You can start with an empty Namespace.

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: example-web-app
 name: example-web-app
spec:
 replicas: 1
 selector:
 matchLabels:
 app: example-web-app
 strategy:
 rollingUpdate:
 maxSurge: 25%
 maxUnavailable: 0
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: example-web-app
 spec:
 containers:
 - image: quay.io/acend/example-web-python:latest
 name: example-web-app
 resources:
 limits:
 cpu: 100m
 memory: 128Mi
 requests:
 cpu: 50m
 memory: 128Mi

oc apply -f deployment_example-web-app.yaml --namespace <namespace>

oc get replicasets --namespace <namespace>

- acend gmbh

31 / 53

Which will give you an output similar to this:

NAME DESIRED CURRENT READY AGE
example-web-app-86d9d584f8 1 1 1 110s

Or for even more details:

The ReplicaSet shows how many instances of a Pod are desired, current and ready.

Now we scale our application to three replicas:

Check the number of desired, current and ready replicas:

NAME DESIRED CURRENT READY AGE
example-web-app-86d9d584f8 3 3 3 4m33s

Look at how many Pods there are:

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-app-86d9d584f8-7vjcj 1/1 Running 0 5m2s
example-web-app-86d9d584f8-hbvlv 1/1 Running 0 31s
example-web-app-86d9d584f8-qg499 1/1 Running 0 31s

As we changed the number of replicas with the oc scale deployment command, the example-web-app Deployment
now differs from your local deployment_example-web-app.yaml file. Change your local deployment_example-web-app.yaml

file to match the current number of replicas and update the value replicas to 3 :

oc get replicaset <replicaset> -o yaml --namespace <namespace>

oc scale deployment example-web-app --replicas=3 --namespace <namespace>

oc get replicasets --namespace <namespace>

oc get pods --namespace <namespace>

Note
OpenShift supports horizontal and vertical autoscaling .

- acend gmbh

32 / 53

https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-autoscaling.html
https://docs.openshift.com/container-platform/latest/nodes/pods/nodes-pods-vertical-autoscaler.html

Check for uninterruptible Deployments
Now we expose our application to the internet by creating a service and a route.

First the service:

Then the route:

Let’s look at our Service. We should see all three corresponding Endpoints:

Name: example-web-app
Namespace: acend-test
Labels: app=example-web-app
Annotations: <none>
Selector: app=example-web-app
Type: ClusterIP
IP Family Policy: SingleStack
IP Families: IPv4
IP: 172.30.89.44
IPs: 172.30.89.44
Port: <unset> 5000/TCP
TargetPort: 5000/TCP
Endpoints: 10.125.4.70:5000,10.126.4.137:5000,10.126.4.138:5000
Session Affinity: None
Events: <none>

Scaling of Pods is fast as OpenShift simply creates new containers.

You can check the availability of your Service while you scale the number of replicas up and down in your
browser: http://<route hostname> .

[...]
metadata:
 labels:
 app: example-web-app
 name: example-web-app
spec:
 replicas: 3
 selector:
 matchLabels:
 app: example-web-app
[...]

oc expose deployment example-web-app --name="example-web-app" --port=5000 --namespace <namespace>

oc create route edge example-web-app --port 5000 --service example-web-app --namespace <namespace>

oc describe service example-web-app --namespace <namespace>

Note
You can find out the route’s hostname by looking at the output of oc get route .

- acend gmbh

33 / 53

Now, execute the corresponding loop command for your operating system in another console.

Linux:

Windows PowerShell:

Scale from 3 replicas to 1. The output shows which Pod is still alive and is responding to requests:

example-web-app-86d9d584f8-7vjcj TIME: 17:33:07,289
example-web-app-86d9d584f8-7vjcj TIME: 17:33:08,357
example-web-app-86d9d584f8-hbvlv TIME: 17:33:09,423
example-web-app-86d9d584f8-7vjcj TIME: 17:33:10,494
example-web-app-86d9d584f8-qg499 TIME: 17:33:11,559
example-web-app-86d9d584f8-hbvlv TIME: 17:33:12,629
example-web-app-86d9d584f8-qg499 TIME: 17:33:13,695
example-web-app-86d9d584f8-hbvlv TIME: 17:33:14,771
example-web-app-86d9d584f8-hbvlv TIME: 17:33:15,840
example-web-app-86d9d584f8-7vjcj TIME: 17:33:16,912
example-web-app-86d9d584f8-7vjcj TIME: 17:33:17,980
example-web-app-86d9d584f8-7vjcj TIME: 17:33:19,051
example-web-app-86d9d584f8-7vjcj TIME: 17:33:20,119
example-web-app-86d9d584f8-7vjcj TIME: 17:33:21,182
example-web-app-86d9d584f8-7vjcj TIME: 17:33:22,248
example-web-app-86d9d584f8-7vjcj TIME: 17:33:23,313
example-web-app-86d9d584f8-7vjcj TIME: 17:33:24,377
example-web-app-86d9d584f8-7vjcj TIME: 17:33:25,445
example-web-app-86d9d584f8-7vjcj TIME: 17:33:26,513

The requests get distributed amongst the three Pods. As soon as you scale down to one Pod, there should
be only one remaining Pod that responds.

Let’s make another test: What happens if you start a new Deployment while our request generator is still
running?

During a short period we won’t get a response:

URL=$(oc get routes example-web-app -o go-template="{{ .spec.host }}" --namespace <namespace>)
while true; do sleep 1; curl -s https://${URL}/pod/; date "+ TIME: %H:%M:%S,%3N"; done

while(1) {
 Start-Sleep -s 1
 Invoke-RestMethod https://<URL>/pod/
 Get-Date -Uformat "+ TIME: %H:%M:%S,%3N"
}

oc rollout restart deployment example-web-app --namespace <namespace>

- acend gmbh

34 / 53

example-web-app-86d9d584f8-7vjcj TIME: 17:37:24,121
example-web-app-86d9d584f8-7vjcj TIME: 17:37:25,189
example-web-app-86d9d584f8-7vjcj TIME: 17:37:26,262
example-web-app-86d9d584f8-7vjcj TIME: 17:37:27,328
example-web-app-86d9d584f8-7vjcj TIME: 17:37:28,395
example-web-app-86d9d584f8-7vjcj TIME: 17:37:29,459
example-web-app-86d9d584f8-7vjcj TIME: 17:37:30,531
example-web-app-86d9d584f8-7vjcj TIME: 17:37:31,596
example-web-app-86d9d584f8-7vjcj TIME: 17:37:32,662
no answer
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:33,729
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:34,794
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:35,862
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:36,929
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:37,995
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:39,060
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:40,118
example-web-app-f4c5dd8fc-4nx2t TIME: 17:37:41,187

In our example, we use a very lightweight Pod. If we had used a more heavyweight Pod that needed a
longer time to respond to requests, we would of course see a larger gap. An example for this would be a
Java application with a startup time of 30 seconds:

example-spring-boot-2-73aln TIME: 16:48:25,251
example-spring-boot-2-73aln TIME: 16:48:26,305
example-spring-boot-2-73aln TIME: 16:48:27,400
example-spring-boot-2-73aln TIME: 16:48:28,463
example-spring-boot-2-73aln TIME: 16:48:29,507
<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>
 TIME: 16:48:33,562
<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>
 TIME: 16:48:34,601
 ...
example-spring-boot-3-tjdkj TIME: 16:49:20,114
example-spring-boot-3-tjdkj TIME: 16:49:21,181
example-spring-boot-3-tjdkj TIME: 16:49:22,231

It is even possible that the Service gets down, and the routing layer responds with the status code 503 as
can be seen in the example output above.

In the following chapter we are going to look at how a Service can be configured to be highly available.

Uninterruptible Deployments
The rolling update strategy makes it possible to deploy Pods without interruption. The rolling update
strategy means that the new version of an application gets deployed and started. As soon as the application
says it is ready, OpenShift forwards requests to the new instead of the old version of the Pod, and the old
Pod gets terminated.

Additionally, container health checks help OpenShift to precisely determine what state the application is in.

Basically, there are two different kinds of checks that can be implemented:

Liveness probes are used to find out if an application is still running
Readiness probes tell us if the application is ready to receive requests (which is especially relevant for
the above-mentioned rolling updates)

These probes can be implemented as HTTP checks, container execution checks (the execution of a
command or script inside a container) or TCP socket checks.

- acend gmbh

35 / 53

https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

In our example, we want the application to tell OpenShift that it is ready for requests with an appropriate
readiness probe.

Our example application has a health check context named health: http://${URL}/health

Task 5.2: Availability during deployment
Define the readiness probe on the Deployment using the following command:

The command above results in the following readinessProbe snippet being inserted into the Deployment:

We are now going to verify that a redeployment of the application does not lead to an interruption.

Set up the loop again to periodically check the application’s response (you don’t have to set the $URL

variable again if it is still defined):

Windows PowerShell:

Restart your Deployment with:

oc set probe deploy/example-web-app --readiness --get-url=http://:5000/health --initial-delay-seconds=10 --timeout-seco
nds=1 --namespace <namespace>

...
containers:
 - image: quay.io/acend/example-web-python:latest
 imagePullPolicy: Always
 name: example-web-app
 readinessProbe:
 httpGet:
 path: /health
 port: 5000
 scheme: HTTP
 initialDelaySeconds: 10
 timeoutSeconds: 1
...

URL=$(oc get routes example-web-app -o go-template="{{ .spec.host }}" --namespace <namespace>)
while true; do sleep 1; curl -s https://${URL}/pod/; date "+ TIME: %H:%M:%S,%3N"; done

while(1) {
 Start-Sleep -s 1
 Invoke-RestMethod https://<URL>/pod/
 Get-Date -Uformat "+ TIME: %H:%M:%S,%3N"
}

oc rollout restart deployment example-web-app --namespace <namespace>

- acend gmbh

36 / 53

Self-healing
Via the Deployment definition we told OpenShift how many replicas we want. So what happens if we simply
delete a Pod?

Look for a running Pod (status RUNNING) that you can bear to kill via oc get pods .

Show all Pods and watch for changes:

Now delete a Pod (in another terminal) with the following command:

Observe how OpenShift instantly creates a new Pod in order to fulfill the desired number of running
instances.

oc get pods -w --namespace <namespace>

oc delete pod <pod> --namespace <namespace>

- acend gmbh

37 / 53

6. Troubleshooting
This lab helps you troubleshoot your application and shows you some tools to make troubleshooting easier.

Logging into a container
Running containers should be treated as immutable infrastructure and should therefore not be modified.
However, there are some use cases in which you have to log into your running container. Debugging and
analyzing is one example for this.

Task 6.1: Shell into Pod
With OpenShift you can open a remote shell into a Pod without installing SSH by using the command oc rsh .
The command can also be used to execute any command in a Pod.

Choose a Pod with oc get pods --namespace <namespace> and execute the following command:

You now have a running shell session inside the container in which you can execute every binary available,
e.g.:

total 12
-rw-r--r-- 1 10020700 root 8192 Nov 27 15:12 hellos.db
-rwxrwsr-x 1 web root 2454 Oct 5 08:55 run.py
drwxrwsr-x 1 web root 17 Oct 5 08:55 static
drwxrwsr-x 1 web root 63 Oct 5 08:55 templates

With exit or CTRL+d you can leave the container and close the connection:

Task 6.2: Single commands
Single commands inside a container can also be executed with oc rsh :

Note
If you’re using Git Bash on Windows, you need to append the command with winpty.

oc rsh --namespace <namespace> <pod>

ls -l

exit

- acend gmbh

38 / 53

Example:

oc rsh --namespace acend-test example-web-app-8b465c687-t9g7b env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
TERM=xterm
HOSTNAME=example-web-app-8b465c687-t9g7b
NSS_SDB_USE_CACHE=no
KUBERNETES_PORT_443_TCP=tcp://172.30.0.1:443
KUBERNETES_PORT_443_TCP_PORT=443
EXAMPLE_WEB_APP_PORT_5000_TCP_PORT=5000
...

The debug command
One of the disadvantages of using the oc rsh command is that it depends on the container to actually run. If
the Pod can’t even start, this is a problem but also where the oc debug command comes in. The oc debug

command starts an interactive shell using the definition of a Deployment, Pod, DaemonSet, Job or even an
ImageStreamTag. In OpenShift 4 it can also be used to open a shell on a Node to analyze it.

The quick way of using it is oc debug RESOURCE/NAME but have a good look at its help page. There are some very
interesting parameters like --as-root that give you (depending on your permissions on the cluster) a very
powerful means of debugging a Pod.

Watching log files
Log files of a Pod can be shown with the following command:

The parameter -f allows you to follow the log file (same as tail -f). With this, log files are streamed and
new entries are shown immediately.

When a Pod is in state CrashLoopBackOff it means that although multiple attempts have been made, no
container inside the Pod could be started successfully. Now even though no container might be running at
the moment the oc logs command is executed, there is a way to view the logs the application might have
generated. This is achieved using the -p or --previous parameter.

Task 6.3: Port forwarding

oc rsh --namespace <namespace> <pod> <command>

oc logs <pod> --namespace <namespace>

Note
This command will only work on pods that had container restarts. You can check the RESTARTS column in the
oc get pods output if this is the case.

oc logs -p <pod> --namespace <namespace>

- acend gmbh

39 / 53

OpenShift allows you to forward arbitrary ports to your development workstation. This allows you to access
admin consoles, databases, etc., even when they are not exposed externally. Port forwarding is handled by
the OpenShift control plane nodes and therefore tunneled from the client via HTTPS. This allows you to
access the OpenShift platform even when there are restrictive firewalls or proxies between your workstation
and OpenShift.

Get the name of the Pod:

Then execute the port forwarding command using the Pod’s name:

Don’t forget to change the Pod name to your own installation. If configured, you can use auto-completion.

The output of the command should look like this:

Forwarding from 127.0.0.1:5000 -> 5000
Forwarding from [::1]:5000 -> 5000

The application is now available with the following link: http://localhost:5000/ . Or try a curl command:

With the same concept you can access databases from your local workstation or connect your local
development environment via remote debugging to your application in the Pod.

This documentation page offers some more details about port forwarding.

Events
OpenShift maintains an event log with high-level information on what’s going on in the cluster. It’s possible

oc get pod --namespace <namespace>

Note
Best run this command in a separate shell, or in the background by adding a “&” at the end of the
command.

oc port-forward <pod> 5000:5000 --namespace <namespace>

Note
Use the additional parameter --address <IP address> (where <IP address> refers to a NIC’s IP address from your
local workstation) if you want to access the forwarded port from outside your own local workstation.

curl localhost:5000

Note
The oc port-forward process runs as long as it is not terminated by the user. So when done, stop it with CTRL-c.

- acend gmbh

40 / 53

http://localhost:5000/
https://docs.openshift.com/container-platform/latest/nodes/containers/nodes-containers-port-forwarding.html

that everything looks okay at first but somehow something seems stuck. Make sure to have a look at the
events because they can give you more information if something is not working as expected.

Use the following command to list the events in chronological order:

Dry-run
To help verify changes, you can use the optional oc flag --dry-run=client -o yaml to see the rendered YAML
definition of your Kubernetes objects, without sending it to the API.

The following oc subcommands support this flag (non-final list):

apply

create

expose

patch

replace

run

set

For example, we can use the --dry-run=client flag to create a template for our Deployment:

The result is the following YAML output:

oc get events --sort-by=.metadata.creationTimestamp --namespace <namespace>

oc create deployment example-web-app --image=quay.io/acend/example-web-python:latest --namespace acend-test --dry-run=c
lient -o yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 creationTimestamp: null
 labels:
 app: example-web-app
 name: example-web-app
 namespace: acend-test
spec:
 replicas: 1
 selector:
 matchLabels:
 app: example-web-app
 strategy: {}
 template:
 metadata:
 creationTimestamp: null
 labels:
 app: example-web-app
 spec:
 containers:
 - image: quay.io/acend/example-web-python:latest
 name: example-web
 resources: {}
status: {}

- acend gmbh

41 / 53

oc API requests
If you want to see the HTTP requests oc sends to the Kubernetes API in detail, you can use the optional flag
--v=10 .

For example, to see the API request for creating a deployment:

The resulting output looks like this:

As you can see, the output conveniently contains the corresponding curl commands which we could use in
our own code, tools, pipelines etc.

oc create deployment test-deployment --image=quay.io/acend/example-web-python:latest --namespace <namespace> --replicas
=0 --v=10

I1114 15:31:13.605759 85289 request.go:1073] Request Body: {"kind":"Deployment","apiVersion":"apps/v1","metadata":{"n
ame":"test-deployment","namespace":"acend-test","creationTimestamp":null,"labels":{"app":"test-deployment"}},"spec":{"r
eplicas":0,"selector":{"matchLabels":{"app":"test-deployment"}},"template":{"metadata":{"creationTimestamp":null,"label
s":{"app":"test-deployment"}},"spec":{"containers":[{"name":"example-web","image":"quay.io/acend/example-web-python:lat
est","resources":{}}]}},"strategy":{}},"status":{}}
I1114 15:31:13.605817 85289 round_trippers.go:466] curl -v -XPOST -H "Accept: application/json, */*" -H "Content-Typ
e: application/json" -H "User-Agent: oc/4.11.0 (linux/amd64) kubernetes/262ac9c" -H "Authorization: Bearer <masked>" 'h
ttps://api.ocp-staging.cloudscale.puzzle.ch:6443/apis/apps/v1/namespaces/acend-test/deployments?fieldManager=kubectl-cr
eate&fieldValidation=Ignore'
I1114 15:31:13.607320 85289 round_trippers.go:495] HTTP Trace: DNS Lookup for api.ocp-staging.cloudscale.puzzle.ch re
solved to [{5.102.150.82 }]
I1114 15:31:13.611279 85289 round_trippers.go:510] HTTP Trace: Dial to tcp:5.102.150.82:6443 succeed
I1114 15:31:13.675096 85289 round_trippers.go:553] POST https://api.ocp-staging.cloudscale.puzzle.ch:6443/apis/apps/v
1/namespaces/acend-test/deployments?fieldManager=kubectl-create&fieldValidation=Ignore 201 Created in 69 milliseconds
I1114 15:31:13.675120 85289 round_trippers.go:570] HTTP Statistics: DNSLookup 1 ms Dial 3 ms TLSHandshake 35 ms Serve
rProcessing 27 ms Duration 69 ms
I1114 15:31:13.675137 85289 round_trippers.go:577] Response Headers:
I1114 15:31:13.675151 85289 round_trippers.go:580] Audit-Id: 509255b1-ee23-479a-be56-dfc3ab073864
I1114 15:31:13.675164 85289 round_trippers.go:580] Cache-Control: no-cache, private
I1114 15:31:13.675181 85289 round_trippers.go:580] Content-Type: application/json
I1114 15:31:13.675200 85289 round_trippers.go:580] X-Kubernetes-Pf-Flowschema-Uid: e3e152ee-768c-43c5-b350-bb3cbf
806147
I1114 15:31:13.675215 85289 round_trippers.go:580] X-Kubernetes-Pf-Prioritylevel-Uid: 47f392da-68d1-4e43-9d77-ff5
f7b7ecd2e
I1114 15:31:13.675230 85289 round_trippers.go:580] Content-Length: 1739
I1114 15:31:13.675244 85289 round_trippers.go:580] Date: Mon, 14 Nov 2022 14:31:13 GMT
I1114 15:31:13.676116 85289 request.go:1073] Response Body: {"kind":"Deployment","apiVersion":"apps/v1","metadata":{"
name":"test-deployment","namespace":"acend-test","uid":"a6985d28-3caa-451f-a648-4c7cde3b51ac","resourceVersion":"206938
5577","generation":1,"creationTimestamp":"2022-11-14T14:31:13Z","labels":{"app":"test-deployment"},"managedFields":[{"m
anager":"kubectl-create","operation":"Update","apiVersion":"apps/v1","time":"2022-11-14T14:31:13Z","fieldsType":"Fields
V1","fieldsV1":{"f:metadata":{"f:labels":{".":{},"f:app":{}}},"f:spec":{"f:progressDeadlineSeconds":{},"f:replicas":{},
"f:revisionHistoryLimit":{},"f:selector":{},"f:strategy":{"f:rollingUpdate":{".":{},"f:maxSurge":{},"f:maxUnavailable":
{}},"f:type":{}},"f:template":{"f:metadata":{"f:labels":{".":{},"f:app":{}}},"f:spec":{"f:containers":{"k:{\"name\":\"e
xample-web\"}":{".":{},"f:image":{},"f:imagePullPolicy":{},"f:name":{},"f:resources":{},"f:terminationMessagePath":{},"
f:terminationMessagePolicy":{}}},"f:dnsPolicy":{},"f:restartPolicy":{},"f:schedulerName":{},"f:securityContext":{},"f:t
erminationGracePeriodSeconds":{}}}}}}]},"spec":{"replicas":0,"selector":{"matchLabels":{"app":"test-deployment"}},"temp
late":{"metadata":{"creationTimestamp":null,"labels":{"app":"test-deployment"}},"spec":{"containers":[{"name":"example-
web","image":"quay.io/acend/example-web-python:latest","resources":{},"terminationMessagePath":"/dev/termination-log","
terminationMessagePolicy":"File","imagePullPolicy":"Always"}],"restartPolicy":"Always","terminationGracePeriodSeconds":
30,"dnsPolicy":"ClusterFirst","securityContext":{},"schedulerName":"default-scheduler"}},"strategy":{"type":"RollingUpd
ate","rollingUpdate":{"maxUnavailable":"25%","maxSurge":"25%"}},"revisionHistoryLimit":10,"progressDeadlineSeconds":600
},"status":{}}
deployment.apps/test-deployment created

Note
If you created the deployment to see the output, you can delete it again as it’s not used anywhere else

- acend gmbh

42 / 53

Progress
At this point, you are able to visualize your progress on the labs by browsing through the following page
http://localhost:5000/progress

If you are not able to open your awesome-app with localhost, because you are using a webshell, you can
also use the ingress address: https://example-web-app-<namespace>.<appdomain>/progress to access the dashboard.

You may need to set some extra permissions to let the dashboard monitor your progress. Have fun!

(which is also the reason why the replicas are set to 0):

oc delete deploy/test-deployment --namespace <namespace>

oc create rolebinding progress --clusterrole=view --serviceaccount=<namespace>:default --namespace=<namespace>

- acend gmbh

43 / 53

http://localhost:5000/progress

7. Attaching a database
Numerous applications are stateful in some way and want to save data persistently, be it in a database, as
files on a filesystem or in an object store. In this lab, we are going to create a MariaDB database and
configure our application to store its data in it.

Task 7.1: Instantiate a MariaDB database
We are going to use an OpenShift template to create the database. This can be done by using the CLI.

We are going to instantiate the MariaDB Template from the openshift Project. Before we can do that, we
need to know what parameters the Template expects. Let’s find out:

NAME DESCRIPTION GENERATOR V
ALUE
MEMORY_LIMIT Maximum amount of memory the container can use. 5
12Mi
NAMESPACE The OpenShift Namespace where the ImageStream resides. o
penshift
DATABASE_SERVICE_NAME The name of the OpenShift Service exposed for the database. m
ariadb
MYSQL_USER Username for MariaDB user that will be used for accessing the database. expression u
ser[A-Z0-9]{3}
MYSQL_PASSWORD Password for the MariaDB connection user. expression [
a-zA-Z0-9]{16}
MYSQL_ROOT_PASSWORD Password for the MariaDB root user. expression [
a-zA-Z0-9]{16}
MYSQL_DATABASE Name of the MariaDB database accessed. s
ampledb
MARIADB_VERSION Version of MariaDB image to be used (10.2 or latest). 1
0.2

As you might already see, each of the parameters has a default value (“VALUE” column). Also, the
parameters MYSQL_USER , MYSQL_PASSWORD and MYSQL_ROOT_PASSWORD are going to be generated (“GENERATOR” is set
to expression and “VALUE” contains a regular expression). This means we don’t necessarily have to
overwrite any of them so let’s simply use those defaults:

The output should be:

secret/mariadb created
service/mariadb created
deploymentconfig.apps.openshift.io/mariadb created

Warning
Please make sure you completed labs 2. First steps, 3. Deploying a container image and 4. Exposing a
service before you continue with this lab.

oc process --parameters openshift//mariadb-ephemeral

oc process openshift//mariadb-ephemeral -pMYSQL_DATABASE=acend_exampledb | oc apply --namespace=<namespace> -f -

- acend gmbh

44 / 53

Task 7.2: Inspection
What just happened is that you instantiated an OpenShift Template that creates multiple resources using
the (default) values as parameters. Let’s have a look at the resources that have just been created by
looking at the Template’s definition:

The Template’s content reveals a Secret, a Service and a DeploymentConfig.

The Secret contains the database name, user, password, and the root password. However, these values will
neither be shown with oc get nor with oc describe :

apiVersion: v1
data:
 database-name: YWNlbmQtZXhhbXBsZS1kYg==
 database-password: bXlzcWxwYXNzd29yZA==
 database-root-password: bXlzcWxyb290cGFzc3dvcmQ=
 database-user: YWNlbmRfdXNlcg==
kind: Secret
metadata:
 ...
type: Opaque

The reason is that all the values in the .data section are base64 encoded. Even though we cannot see the
true values, they can easily be decoded:

The interesting thing about Secrets is that they can be reused, e.g., in different Deployments. We could
extract all the plaintext values from the Secret and put them as environment variables into the
Deployments, but it’s way easier to instead simply refer to its values inside the Deployment (as in this lab)
like this:

oc get templates -n openshift mariadb-ephemeral -o yaml

oc get secret mariadb --output yaml --namespace <namespace>

echo "YWNlbmQtZXhhbXBsZS1kYg==" | base64 -d

Note
There’s also the oc extract command which can be used to extract the content of Secrets and ConfigMaps
into a local directory. Use oc extract --help to see how it works.

Note
By default, Secrets are not encrypted!

However, both OpenShift and Kubernetes (1.13 and later) offer the capability to encrypt data in etcd.

Another option would be the use of a secrets management solution like Vault by HashiCorp .

- acend gmbh

45 / 53

https://docs.openshift.com/container-platform/latest/security/encrypting-etcd.html
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://www.vaultproject.io/

...
spec:
 template:
 spec:
 containers:
 - name: mariadb
 env:
 - name: MYSQL_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: MYSQL_DATABASE
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
...

Above lines are an excerpt of the MariaDB Deployment. Most parts have been cut out to focus on the
relevant lines: The references to the mariadb Secret. As you can see, instead of directly defining
environment variables you can refer to a specific key inside a Secret. We are going to make further use of
this concept for our Python application.

Task 7.3: Attach the database to the application
By default, our example-web-app application uses an SQLite memory database.

However, this can be changed by defining the following environment variable to use the newly created
MariaDB database:

#MYSQL_URI=mysql://<user>:<password>@<host>/<database>
MYSQL_URI=mysql://acend_user:mysqlpassword@mariadb/acend_exampledb

The connection string our example-web-app application uses to connect to our new MariaDB, is a concatenated
string from the values of the mariadb Secret.

For the actual MariaDB host, you can either use the MariaDB Service’s ClusterIP or DNS name as the
address. All Services and Pods can be resolved by DNS using their name.

The following commands set the environment variables for the deployment configuration of the example-web-

app application:

Warning
Depending on the shell you use, the following set env command works but inserts too many apostrophes!
Check the deployment’s environment variable afterwards or directly edit it as described further down
below.

- acend gmbh

46 / 53

and

The first command inserts the values from the Secret, the second finally uses these values to put them in
the environment variable MYSQL_URI which the application considers.

You can also do the changes by directly editing your local deployment_example-web-app.yaml file. Find the section
which defines the containers. You should find it under:

...
spec:
...
 template:
 ...
 spec:
 containers:
 - image: ...
...

The dash before image: defines the beginning of a new container definition. The following specifications
should be inserted into this container definition:

Your file should now look like this:

oc set env --from=secret/mariadb --prefix=MYSQL_ deploy/example-web-app --namespace <namespace>

oc set env deploy/example-web-app MYSQL_URI='mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_
DATABASE_NAME)' --namespace <namespace>

 env:
 - name: MYSQL_DATABASE_NAME
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
 - name: MYSQL_DATABASE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 - name: MYSQL_DATABASE_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: MYSQL_DATABASE_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_URI
 value: mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

- acend gmbh

47 / 53

 ...
 containers:
 - image: quay.io/acend/example-web-python:latest
 imagePullPolicy: Always
 name: example-web-app
 ...
 env:
 - name: MYSQL_DATABASE_NAME
 valueFrom:
 secretKeyRef:
 key: database-name
 name: mariadb
 - name: MYSQL_DATABASE_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-password
 name: mariadb
 - name: MYSQL_DATABASE_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 key: database-root-password
 name: mariadb
 - name: MYSQL_DATABASE_USER
 valueFrom:
 secretKeyRef:
 key: database-user
 name: mariadb
 - name: MYSQL_URI
 value: mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

Then use:

to apply the changes.

The environment can also be checked with the set env command and the --list parameter:

This will show the environment as follows:

deployments/example-web-app, container example-web-app
MYSQL_DATABASE_PASSWORD from secret mariadb, key database-password
MYSQL_DATABASE_ROOT_PASSWORD from secret mariadb, key database-root-password
MYSQL_DATABASE_USER from secret mariadb, key database-user
MYSQL_DATABASE_NAME from secret mariadb, key database-name
MYSQL_URI=mysql://$(MYSQL_DATABASE_USER):$(MYSQL_DATABASE_PASSWORD)@mariadb/$(MYSQL_DATABASE_NAME)

oc apply -f deployment_example-web-app.yaml --namespace <namespace>

oc set env deploy/example-web-app --list --namespace <namespace>

Warning
Do not proceed with the lab before all example-web-app pods are restarted successfully.

The change of the deployment definition (environment change) triggers a new rollout and all example-web-
app pods will be restarted. The application will not be connected to the database until all pods are restarted
successfully.

- acend gmbh

48 / 53

In order to find out if the change worked we can either look at the container’s logs (oc logs <pod>) or we
could register some “Hellos” in the application, delete the Pod, wait for the new Pod to be started and check
if they are still there.

Task 7.4: Manual database connection
As described in 6. Troubleshooting we can log into a Pod with oc rsh <pod> .

Show all Pods:

Which gives you an output similar to this:

NAME READY STATUS RESTARTS AGE
example-web-app-574544fd68-qfkcm 1/1 Running 0 2m20s
mariadb-f845ccdb7-hf2x5 1/1 Running 0 31m
mariadb-1-deploy 0/1 Completed 0 11m

Log into the MariaDB Pod:

You are now able to connect to the database and display the data. Login with:

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 52810
Server version: 10.2.22-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [acend_exampledb]>

Show all tables with:

Note
This does not work if we delete the database Pod as its data is not yet persisted.

oc get pods --namespace <namespace>

Note
As mentioned in 6. Troubleshooting, remember to append the command with winpty if you’re using Git Bash
on Windows.

oc rsh --namespace <namespace> <mariadb-pod-name>

mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE

- acend gmbh

49 / 53

Show any entered “Hellos” with:

Task 7.5: Import a database dump
Our task is now to import this dump.sql into the MariaDB database running as a Pod. Use the mysql

command line utility to do this. Make sure the database is empty beforehand. You could also delete and
recreate the database.

Solution
This is how you copy the database dump into the MariaDB Pod.

Download the dump.sql or get it with curl:

Copy the dump into the MariaDB Pod:

This is how you log into the MariaDB Pod:

This command shows how to drop the whole database:

show tables;

select * from hello;

Note
You can also copy local files into a Pod using oc cp. Be aware that the tar binary has to be present inside the
container and on your operating system in order for this to work! Install tar on UNIX systems with e.g. your
package manager, on Windows there’s e.g. cwRsync . If you cannot install tar on your host, there’s also the
possibility of logging into the Pod and using curl -O <url>.

curl -O https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/du
mp.sql

oc cp ./dump.sql <podname>:/tmp/ --namespace <namespace>

oc rsh --namespace <namespace> <podname>

mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE

- acend gmbh

50 / 53

https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/dump.sql
https://www.itefix.net/cwrsync
https://raw.githubusercontent.com/acend/kubernetes-basics-training/main/content/en/docs/attaching-a-database/dump.sql

Import a dump:

Check your app to see the imported “Hellos”.

drop database `acend_exampledb`;
create database `acend_exampledb`;
exit

mysql -u$MYSQL_USER -p$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE < /tmp/dump.sql

Note
You can find your app URL by looking at your route:

oc get route --namespace <namespace>

Note
A database dump can be created as follows:

oc rsh --namespace <namespace> <podname>

mysqldump --user=$MYSQL_USER --password=$MYSQL_PASSWORD -h$MARIADB_SERVICE_HOST $MYSQL_DATABASE > /tmp/dump.sql

oc cp <podname>:/tmp/dump.sql /tmp/dump.sql

- acend gmbh

51 / 53

8. Persistent storage
By default, data in containers is not persistent as was the case e.g. in 7. Attaching a database. This means
that the data written in a container is lost as soon as it does not exist anymore. We want to prevent this
from happening. One possible solution to this problem is to use persistent storage.

Request storage
Attaching persistent storage to a Pod happens in two steps. The first step includes the creation of a so-
called PersistentVolumeClaim (PVC) in our namespace. This claim defines amongst other things what size
we would like to get.

The PersistentVolumeClaim only represents a request but not the storage itself. It is automatically going to
be bound to a PersistentVolume by OpenShift, one that has at least the requested size. If only volumes exist
that have a bigger size than was requested, one of these volumes is going to be used. The claim will
automatically be updated with the new size. If there are only smaller volumes available, the claim cannot be
fulfilled as long as no volume with the exact same or larger size is created.

Attaching a volume to a Pod
In a second step, the PVC from before is going to be attached to the Pod. In 5. Scaling we used oc set to
add a readiness probe to the Deployment. We are now going to do the same and insert the
PersistentVolume.

Task 8.1: Add a PersistentVolume
The oc set volume command makes it possible to create a PVC and attach it to a Deployment in one fell
swoop:

With the instruction above we create a PVC named mariadb-data of 1Gi in size, attach it to the
DeploymentConfig mariadb and mount it at /var/lib/mysql . This is where the MariaDB process writes its data
by default so after we make this change, the database will not even notice that it is writing in a
PersistentVolume.

We need to redeploy the application pod, our application automatically creates the database schema at

Note
If you are using Windows, your shell might assume that it has to use the POSIX-to-Windows path conversion
for the mount path /var/lib/mysql . PowerShell is known to not do this while, e.g., Git Bash does.

Prepend your command with MSYS_NO_PATHCONV=1 if the resulting mount path was mistakenly converted.

oc set volume dc/mariadb --add --name=mariadb-data --claim-name=mariadb-data --type persistentVolumeClaim --mount-path=
/var/lib/mysql --claim-size=1G --overwrite --namespace <namespace>

Note
Because we just changed the DeploymentConfig with the oc set command, a new Pod was automatically
redeployed. This unfortunately also means that we just lost the data we inserted before.

- acend gmbh

52 / 53

startup time. Wait for the database pod to be started fully before restarting the application pod.

If you want to force a redeployment of a Pod, you can use this:

Using the command oc get persistentvolumeclaim or oc get pvc , we can display the freshly created
PersistentVolumeClaim:

Which gives you an output similar to this:

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
mariadb-data Bound pvc-2cb78deb-d157-11e8-a406-42010a840034 1Gi RWO standard 11s

The two columns STATUS and VOLUME show us that our claim has been bound to the PersistentVolume pvc-

2cb78deb-d157-11e8-a406-42010a840034 .

Error case
If the container is not able to start it is the right moment to debug it! Check the logs from the container and
search for the error.

Task 8.2: Persistence check
Restore data
Repeat the task to import a database dump .

Test
Scale your MariaDB Pod to 0 replicas and back to 1. Observe that the new Pod didn’t loose any data.

oc rollout restart deployment example-web-app --namespace <namespace>

oc get pvc --namespace <namespace>

oc logs mariadb-f845ccdb7-hf2x5 --namespace <namespace>

Note
If the container won’t start because the data directory already has files in it, use the oc debug command
mentioned in 7. Attaching a database to check its content and remove it if necessary.

- acend gmbh

53 / 53

file:///attaching-a-database/#task-75-import-a-database-dump

	Setup
	1. Web terminal
	2. Local usage
	3. Other ways to work with OpenShift

	Labs
	1. Introduction
	2. First steps
	3. Deploying a container image
	4. Exposing a service
	5. Scaling
	6. Troubleshooting
	7. Attaching a database
	8. Persistent storage

